FINAL ACTION MEMORANDUM AND SITE EVALUATION NIKE MISSILE MAGAZINE BRAVO IN AREA 6A LIBERTYVILLE TRAINING SITE VERNON HILLS, ILLINOIS ### SOUTHNAVFACENGCOM CONTRACT NUMBER: N62467-89-D-0318 **CTO-161** Prepared for: Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina Prepared by: EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962 www.ensafe.com August 30, 2002 ### FINAL ACTION MEMORANDUM AND SITE EVALUATION NIKE MISSILE MAGAZINE BRAVO IN AREA 6A LIBERTYVILLE TRAINING SITE VERNON HILLS, ILLINOIS SOUTHNAVFACENGCOM CONTRACT NUMBER: N62467-89-D-0318 **CTO-161** Prepared for: Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina Prepared by: EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962 www.ensafe.com The Contractor, EnSafe Inc., hereby certifies that, to the best of its knowledge and belief, the technical data delivered herewith under Contract No. N62467-89-D-0318 is complete, accurate, and complies with all requirements of the contract. | Date: | August 30, 2002 | | | |------------|----------------------|---|--| | Signature: | Jan Pean | h | | | Name: | Claire Barnett, P.E. | V | | | Title: | Task Order Manager | | | ## **Table of Contents** | 1.0 | PURPO | SE | 1 | |---------|---------|--|----| | 2.0 | SITE CO | ONDITIONS AND BACKGROUND | 2 | | | 2.1 I | Physical Location | 2 | | | | Previous Investigations | | | | | Sampling Results | | | | | Release or Threatened Release into the Environment of a | - | | | | Hazardous Substance, Pollutant, or Contaminant | 8 | | *** · · | 2.5 | National Priorities List Status | 9 | | | | Current Actions | | | • | 2.7 | State and Federal Authorities' Role | 2 | | 3.0 | THREA | T TO PUBLIC HEALTH, WELFARE, OR THE ENVIRONMENT 2 | 2 | | 4.0 | ENDAN | NGERMENT DETERMINATION | 5 | | 5.0 | PROPO | SED ACTIONS AND ESTIMATED COSTS | 5 | | | | Description of the Proposed Action | | | | 5.2 | Contribution to Remedial Performance | 7 | | | | Applicable or Relevant and Appropriate Requirements (ARARs) 2 | | | | | Project Schedule | | | | | Estimated Costs | | | 6.0 | NOT TA | TED CHANGE IN THE SITUATION SHOULD ACTION BE DELAYED OF AKEN | 4 | | 7.0 | OUTST | ANDING POLICY ISSUES | 5 | | 8.0 | ENFOR | CEMENT | 5 | | 9.0 | | MENDATION 3 | | | | • | | | | | | List of Figures | r' | | Figure | 1 5 | Site Location Map | 3 | | Figure | | | 5 | | Figure | 3 1 | NIKE Missile Magazine Layout | _ | | Figure | | Magazine Bravo Soil Sampling Locations | | | Figure | | Magazine Bravo Groundwater Sample Locations | | | Figure | | | 0 | | Figure | | and the contract of contra | 21 | | T | - | | _ | ## List of Tables | Table 1 | SVOC Concentrations in Magazine Bravo Soil (μg/kg) | 11 | |----------|---|----| | Table 2 | 2002 Soil Samples South of Magazine Bravo | 12 | | Table 3 | June 2002 Phase II Delineation Soil Samples South of Magazine Bravo — | | | | Organics | 13 | | Table 4 | June 2002 Phase I Delineation Soil Samples South of Magazine Bravo — | | | | Metals | 14 | | Table 5 | July 2002 Soil Samples South of Magazine Bravo — Organics | 15 | | Table 6 | July 2002 Soil Samples South of Magazine Bravo — Metals | 17 | | Table 7 | Magazine Bravo Cleanup Levels | 22 | | Table 8 | Applicable or Relevant and Appropriate Requirements | 29 | | Table 9 | Proposed Project Schedule | 33 | | Table 10 | Excavation With Offsite Disposal: Cost Summary | 34 | | | | | ## List of Appendices Appendix A Analytical Data ### List of Acronyms AR Administrative Record ARAR Applicable or Relevant and Appropriate Requirement BCT Base Realignment and Closure Cleanup Team CCI CH2M Hill Constructors, Inc. CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations FAA Federal Aviation Administration IR Information Repository LSL Libertyville Screening Level LTS Libertyville Training Site NAS Naval Air Station NCP National Contingency Plan PAH polynuclear aromatic hydrocarbon PCB polychlorinated biphenyl SARA Superfund Amendment Reauthorization Act SVOC semivolatile organic compound TAL target analyte list TCL target compound list TCRA time-critical removal action VOC volatile organic compound ### 1.0 PURPOSE This memorandum documents the objectives and scope of the time-critical removal action (TCRA) planned for former NIKE Missile Magazine Bravo in Area 6A at the Libertyville Training Site (LTS). The purpose of this removal action is to abate the threat to public health and the environment posed by contaminated soil at this site. Subsurface soil at Magazine Bravo is contaminated with semivolatile organic compounds (SVOCs) at concentrations exceeding site remediation levels. The selected removal action is excavation of contaminated soil with disposal offsite as special waste (as determined by hazardous waste characterization) in a permitted landfill. Timing of remediation is critical based on construction schedule commitments for site redevelopment. This document is issued by the U.S. Department of Navy, the lead agency responsible for this site. The Navy became the lead agency through the president's signing of Executive Order 12580 on January 23, 1987. This Executive Order delegated the president's authority under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendment Reauthorization Act (SARA) to federal agencies such as the Department of Defense and Department of the Navy. This authority gave the Department of the Navy the responsibility, as lead agency, for conducting response actions to remove or clean up actual or potential releases of hazardous substances, pollutants, or contaminants at its facilities. Section 104 of CERCLA and SARA allows an authorized agency to remove, or arrange for removal, and to provide for remedial action relating to hazardous substances, pollutants, or contaminants at any time or to take any other response measure consistent with the National Contingency Plan (NCP) as necessary to protect the public health, welfare, and/or the environment. The NCP, 40 Code of Federal Regulation (CFR) 300.415 provides implementing regulations for CERCLA and SARA specific to removal actions. Conditions at this site meet the NCP section 300.415 (b)(20) criteria for a removal action. This document was prepared pursuant to NCP, 40 CFR 300.410 and 300.415. An Administrative Record (AR) file and Information Repository (IR) have been established for this site. Sections 1, 2 and 3 of this document include information which, along with documents located in the AR and IR, serve as the Removal Site Evaluation for this TCRA. Public Notice of the TCRA, the AR, and IR was published in the *Daily Herald*, a local newspaper of record, on August 29, 2002. ### 2.0 SITE CONDITIONS AND BACKGROUND ### 2.1 Physical Location The 164.32-acre LTS is approximately 30 miles north of downtown Chicago (Figure 1). With elevations varying from approximately 690 to 705 feet above mean sea level, the LTS property is higher than the surrounding area. The Navy purchased the site in 1945 for use as an auxiliary airfield and training site for Naval Air Station (NAS) Glenview. In 1954, the LTS was transferred to the Army and used as a NIKE missile base until 1963. In 1972, the Navy resumed control of the LTS, intending to use it for NAS Glenview housing, which was never built. The LTS was later used for local military and civilian firearms training. From 1971 until the fall of 2000, the Federal Aviation Administration (FAA) used 6 acres for an aircraft navigational aid facility. In 1999, the Navy transferred 3.67 acres of the LTS to the FAA for construction of a new navigational aid facility, which became operational in the fall of 2000. As of October 2001, all of the LTS property has been transferred
from the Navy to the FAA or the community, with the exception of Area 6A. During the Environmental Baseline Survey, all LTS areas were classified "Gray," meaning they had not been evaluated or required additional evaluation. The LTS was divided into 10 areas for the investigation (Figure 2). These divisions allowed the potential environmental issues to be addressed in an organized fashion. Following the initial site investigation, areas requiring further investigation or action were separated and designated with a letter after the area number, i.e., Area 6 was divided into Areas 6 and 6A. Area 6A contains the former C-94 Launch Area, which included three NIKE missile storage magazines. The three abandoned underground magazines are identified as Magazines Alpha, Bravo, and Charlie (Figure 3). During the site's use by the Army, NIKE missiles were stored in the magazines but were never deployed. The surface of Area 6A was paved, with a storm water drainage ditch around the perimeter of the magazines. Prior to redevelopment by the Village of Vernon Hills, most of the storm water from the LTS flowed to Area 6A via a 48-inch storm drain and was discharged to the drainage ditch immediately north of Area 6A. Trespassing has been a persistent problem over the history of the property; the abandoned magazines proved to be an attractive location for many activities. For many years, the Navy has blocked access to all three magazines to prevent trespassers from entering them. Recently, a chain-link fence was erected around Area 6A to further prevent unauthorized access to the site, and demolition of the magazines is underway. Even with the security measures currently in place, the potential for trespassing remains a concern during the demolition activities of the TCRA. Currently, the land uses surrounding the site are suburban. Land use to the north is an office park campus; land use to the northeast, east and southeast is recreational, consisting of sports fields and open space. A storm water management reservoir is located to the south of the site. Land uses to the west and northwest are single family residential and a public park. ### 2.2 Previous Investigations Area 6A was investigated during the Gray Sites Investigation and the Gray Sites Addendum Investigation (Final Gray Sites Investigation Report and the Final Gray Sites Addendum Part 2, EnSafe, 2000). During these investigations, Magazine Alpha was empty and accessible for entry, inspection, and sampling. Until June 2001, Magazines Bravo and Charlie were filled with water and were inaccessible. In June 2001, under a license from the Navy, the Village of Vernon Hills pumped most of the water from Magazines Bravo and Charlie. During pumping, evidence of petroleum product was observed in the last 2 to 3 feet of water in each magazine. The Village ceased its operations and the Navy returned to the site to address the newly identified environmental issues. An investigation to assess the interior of Magazines Bravo and Charlie and to determine whether contamination existed outside the magazines was conducted in July 2001. As part of the process, soil and groundwater samples were collected from the backfill around both magazines. The analytical results, presented in the *Area 6A NIKE Missile Magazines Investigation Report* (EnSafe, 2001), indicated SVOCs exceeding Libertyville Screening Levels (LSLs) in backfill soil around the magazines. LSLs are risk-based concentrations protective of a residential property use scenario. The detected SVOCs are those commonly present in petroleum products and were thought to be the result of waterproofing material scraped off the exterior walls of the magazines during sampling. Based on these results and discussions with the Base Realignment and Closure Cleanup Team (BCT), the Navy decided to collect additional samples 5 feet from the magazine walls to assess potential impact to site soil from this material or other potential contaminant sources associated with the magazines. Because samples from Magazine Bravo contained contaminants exceeding LSLs, Magazine Bravo was investigated further from April to July 2002. In all, 14 soil borings were installed around Magazine Bravo during three phases of delineation sampling (see Figure 4). Soil from these borings was sampled and analyzed for target compound list (TCL) volatile organic compounds (VOCs); TCL SVOCs, including polynuclear aromatic hydrocarbons (PAHs) using low detection limits; TCL polychlorinated biphenyls (PCBs); and target analyte list (TAL) metals. The Synthetic Precipitation Leaching Procedure was conducted for six metals and soil samples were also analyzed for pH to determine the appropriate LSL screening level. Four temporary monitoring wells and one permanent monitoring well, shown on Figure 5, were installed and sampled for TCL VOCs; TCL SVOCs, including PAHs at low detection limits; TCL PCBs; and TAL metals. ### 2.3 Sampling Results As shown on Figure 4, SVOCs exceeded LSLs in samples from five of the soil borings. These exceedances occurred at depths ranging from 12 to 16 feet below ground surface. No groundwater samples had contaminant concentrations that exceeded LSLs. Soil exceedances are summarized in Table 1. Tables 2 through 6 present the sampling results for all constituents detected at Magazine Bravo during the 2001 and 2002 investigations of the site. A complete set of analytical results can be found in Appendix A. # 2.4 Release or Threatened Release into the Environment of a Hazardous Substance, Pollutant, or Contaminant Soil sampling results at Magazine Bravo showed SVOC concentrations above LSLs. Future site residents could be exposed to this soil contamination through incidental ingestion, dermal contact, or dust inhalation. The source of this contamination is thought to be associated with magazine construction activities. Final Action Memorandum and Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 | | | | SVOC Concentratio | Table 1
ns in Magazine Brav | o Soil (μg/kg) | | | |--------------------|---------------------------|--------------------|----------------------|--------------------------------|-----------------------|-----------------------------------|-----------| | Sample
Location | Sample
Depth
(feet) | Benzo(a)anthracene | Benzo(b)fluoranthene | Benzo(a)pyrene | Dibenz(a,h)anthracene | 3-Methylphenol/
4-Methylphenol | Carbazole | | B03 | 12 -14 | 2,000 D | 1,700 D | 1,900 D | 370 | ND | ND | | 3D - | 14-16 | 300 J | 170 J | 230 J | 50 J | ND | ·87 J | | 3F | 14-16 | 80 | 57 | 67 | ND | ND | 35 J | | 3G | 12-14 | 5.5 J | 5.6 J | 5.2 J | ND | 630 J | 15,000 | | 3H | 14-16 | 300 | 230 | 260 | 57 | ND | 62 J | | LSL | | | 620 | 62 . | 62 | 240 . | 2,800 | Notes: $\mu g/kg$ micrograms per kilogram Diluted sample. Estimated value. D ND Not detected. Libertyville Screening Level. Concentration exceeds LSL. LSL Bold ### Soil Samples South of Magazine Bravo | Or | ganic Compounds | • | | |--------------------------------|-----------------|---------|--------| | | | LTSSB | LTSSB | | Constituent | LSL | B0305 | B0314 | | Low Level PAHs | | | | | Naphthalene | 18,000 | 2.3 J | 11 | | Acenaphthene | 2,900,000 | 2.0 J | 330 | | Fluorene | 2,600,000 | 2.8 J | 450 | | Phenanthrene | 1,100,000 | 14 | 3800 D | | Anthracene | 22,000,000 | ND | 1600 D | | Fluoranthene | 2,300,000 | 15 | 4900 D | | Pyrene | 2,300,000 | . 13 | 4600 D | | Chrysene | 62,000 | 7.1 J | 1900 D | | Benzo(a)anthracene | 620 | 2.4 J | 2000 D | | Benzo(b)fluoranthene | 620 | 5.3 J | 1700 D | | Benzo(k)fluoranthene | 6,200 | 2.7 J | 1500 D | | Benzo(a)pyrene | 62 | 1.7 J | 1900 D | | Indeno(1,2,3-cd)pyrene | 620 | 7.3 J | 530 | | Dibenz(a,h)anthracene | 62 | ND | 370 | | Benzo(g,h,i)perylene | 2,300,000 | 2.4 J | 650 | | 2-Methylnaphthalene | 290,000 | 2.0 J | 21 | | 1-Methylnaphthalene | NA | * 1.4 J | 14 | | Semivolatile Organic Compounds | | | | | Carbazole | 2,800 | ND | ND | | Volatile Organic Compounds | | | | | Acetone | 16,000 | 26 | 23 | | Polychlorinated Biphenyls | | Not de | tected | Only detected constituents are presented. LSL = Libertyville screening levels. Units = Organics ug/kg; Inorganics = mg/kg ND = Not detected. J = Estimated value. **Bold** = Concentration exceeds LSL. NA = Not Available | | Ino | rganic Comp | ounds | | | |-------------|--------|---------------------------------------|-------------------|----------------|----------------| | Constituent | LSL | Bkgd
6"-10' | Bkgr
10' - 60' | LTSSB
B0305 | LTSSB
B0314 | | Metals | • | · · · · · · · · · · · · · · · · · · · | • | - | <u> </u> | | Aluminum | 76,000 | 17,985 | 8,392 | 11,600 | 10,500 | | Arsenic | 0.39 | 29.9 | 11.8 | 7.8 | 8.2 | | Barium | 1,200 | 147.6 | 86.38 | -65.3 J | 65.2 J | | Beryllium | 150 | 1.26 | 0.7 | 0.6 J | 0.57 J | | Cadmium | 37 | 0.34 | 2.1 | 0.26 J | 0.13 J | | Calcium | EN | 104,000 | 110,922 | 48,600 | 45,800 | | Chromium | 210 | 31.3 | 23.8 | 19.3 | 18.3 | | Cobalt | 4,700 | -25.4 | 13.1 | 11 | 10.8 | | Copper . | 2,900 | 55.7 | 44.7 | 22.9 | 21.5 | | Iron | EN | 53,577 | 20,936 | 21,700 | 24,500 | | Lead | 400 | 27.9 | 14.9 | 15.5 J | 12.5 J | | Magnesium | EN | 36,100 | 63,513 | 26,700 | 25,700 | | Manganese — | 1,800 | 2,191 | 928 | 640 | 802 | | Nickel | 1,500 | 66.6 | 34.9 | 25.9 J | 25.9 J | | Potassium | EN | 17,905 | 3,180 | 2,530 J | 2,110J | | Selenium | 8.8 | 2.11 | NA | 0.27 J | ND . | | Sodium | - EN | NA | 270 | 308 J | 333 J | | Thallium | 5.2 | NA | NA | 2.2 | 1.7 J | | Vanadium | 550 | 49.4 | 20.6 | 29.3 | 28.5 | | Zinc | 7,200 | 100,46 | 399 | 74.3 J | 53.3 J | | SPLP Metal | Class II Soil
to GW
Migration | LTSSB
B0305 | LTSSB
B0314 | |------------|-------------------------------------|----------------|----------------| | Chromium | 1 | ND | ND | | Cobalt | 1 | · ND | ND | | Lead | 0.1 | ND | ND | | Manganese | 10 | 0,085 | 0.19 | | Vanadium | 0.1 | ND | 0.008 J | Table 3 June 2002
Phase I Delineation ### Soil Samples South of Magazine Bravo - Organics | | | LTSSB LTSCB | LTSSB | LTSSB | LTSSB | |--------------------------------|------------|--------|-------|-------|-------|---------------|-----------|------------|----------|-------|--------|-------|-------|-------| | Constituent | LSL | B3B12 | B3B14 | B3B16 | B3C12 | B3C14 | B3C16 | B3D12 | B3D14 | B3D16 | B3D16 | B3E12 | B3E14 | B3E16 | | | LSE | DODIZ | DSDI4 | DJDIU | B3C12 | D 3C14 | Bacto | DSD12 | D3D14 | DODIO | DODIO | DSEAL | DJEI4 | DSETO | | Low Level PAHs | | | | | | | | | | | | | | | | Naphthalene | 18,000 | 1.6 J | ND | ND | 2.4 J | ND | ND | 20 | 4.3 J | 26J | .56J | 7.8 | 26 | 9.1 | | Acenaphthene | 2,900,000 | ND | ND . | ND | 17 | ND | ND | 18 | 12 | 74J | 220J | 15 | 29 | 22 | | Fluorene | 2,600,000 | ND | ND | ND | 16 | ND | ND | 15 | 12 | 75J | 240J | 21 | 29 | 18 | | Phenanthrene | 1,100,000 | 4.6 J | 3.2 J | 4.1 J | 66 | 1.8 J | 6.2 J | 71 | 60 | 220J | 400J | 96 | 110 | 72 | | Anthracene | 22,000,000 | ND | ND | ND | 26 | ND | ND | 30 | 19 | 120J | 360J | 23 | 27 | 21 | | Fluoranthene | 2,300,000 | 3.6 J | ND | 2.4 J | 87 | ND | ND | 85 | 62 | 300J | 700J | 98 | 52 | 78 | | Pyrene | 2,300,000 | 4.7 J | 7.2 J | 7.4 J | 71 | 6.5 J | 3.4 J | 75 | 55 | 240J | . 550J | 62 | 41 | 63 | | Chrysene | 62,000 | 3.5 J | 8.7 | 9.8 | 31 | 7.8 | 5.0 J | 34 | 27 | 110J | 260J | 9.1 | - 20 | 33 | | Benzo(a)anthracene | 620 | ND | ND | ND | 32 | ND | ND | 35 | 27 | 120J | 300J | 6.3 J | 17 | 32 | | Benzo(b)fluoranthene | 620 | ND | 2.3 J | 3.2 J | 22 | 2.7 J | ND | 24 | 21 | 74J | 170J | 5.2 J | 19 | 33 | | Benzo(k)fluoranthene | 6,200 | 1.7 J | ND | ND | 22 | ND | ND | 23 | 16 | 92J | 230J | ND | ND | ND | | Benzo(a)pyrene | 62 | ND | ND | 2.5 J | 26 | ND | ND | 28 | 22 | 97J | 230J | 3.4 J | - 14 | -24 | | Indeno(1,2,3-cd)pyrene | 620 | ND | ND | 1.6 J | 12 | ND | ND | 13 | 10 | 44J | 120J | 1.7 J | 8.3 | 13 | | Dibenz(a,h)anthracene | 62 | ND | ND | ND | 4.8 J | ND | ND | 4.8 J | 4.1 J | 14J | 50J | ND | 3.0 J | 3.2 J | | Benzo(g,h,i)perylene | 2,300,000 | 2.6 J | 5.0 J | 5.1 J | 13 | 5.9 J | 3.8 J | 15 | 11 | 41J | 100J | 4.4 J | 10 | 12 . | | 2-Methylnaphthalene | 290,000 | 0.93 J | 1.1 J | ND | 3.8 J | 0.87 J | 1.8 J | 8.7 | 3.6 J | 7.9J | 14J | 6.3 J | 10 | 4.7 J | | 1-Methylnaphthalene | NA | ND | ND | ND | 2.9 J | ND | 1.5 J | 6.5 J | 2.9 J | 5.0 J | 8.9 | 4.4 J | 6.2 J | 3.3 J | | Semivolatile Organic Compounds | | | | | , | | | | | | | | | | | Dibenzofuran | 76,000 | ND 83 J | 55 J | ND | ND | 40 J | | Carbazole | 2,800 | ND 130 J | 87 J | ND | ND | 56 J | | bis(2-Ethylhexyl)phthalate | 35,000 | ND. | ND | ND | ND. | ND | ND | ND | 60 J | ND | ND | ND - | ND | ND | | Volatile Organic Compounds | | | | | | | | | | | | | | | | Acetone | 16,000 | 13J | ND | ND | 10J | ND | ND | 8J | 11 | 12 | 9 J | 11J | 12J | ND | | Polychlorinated Biphenyls | | | | | | - | None dete | cted in an | y sample | • | | | | | ### Notes: Only detected constituents are presented. LSL = Libertyville screening levels. Units = $\mu g/kg$ ND = Not detected. J = Estimated value. Bold = Concentration exceeds LSL NA = Not Available ### Phase I Delineation ### Soil Samples South of Magazine Bravo - Metals | |] | Bkgd | Bkgd | LTSSB LTSCB | LTSSB | LTSSB | LTSSB | |-------------|------------------|---------|---------|---------|--------|---------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------| | Constituent | LSL | 6"-10' | 10'-60' | B3B12 | B3B14 | B3B16 | B3C12 | B3C14 | B3C16 | B3D12 | B3D14 | B3D16 | B3D16 | B3E12 | B3E14 | B3E16 | | Metals | | | | | | , | | | | | | | | | | | | Aluminum | 76,000 | 17,985 | 8,392 | 10,400 | 9,310 | 7,980 | 9,830 | 8,400 | 10,100 | 10,900 | 9,290 | 10,300 | 9,740 | 11,100 | 9,530 | 9,750 | | Antimony . | 20 | 1.5 | 0.94 | ND | · ND | ND | ND | ND | ND | 1.1J | ND | ND | ND | ND | ND | ND | | Arsenic | 0.39 | 29.9 | 11.8 | 9.3J | 5.7J | 8.5J | 22.3J | 6.9J | 8.9J | 9.6 | 7.8 | 6.9 | 7.7 | 6.1J | 7.2J | 6.9J | | Barium | 1,200 | 147.6 | 86.38. | 61.6 | 40.7J | 39.1J | 65.8 | 33.8J | 54.6 | 83.4 | 60.6 | 61.9 | 56.6 | 67 | 51.4 | 55.3 | | Beryllium | 150 | 1.26 | 0.7 | 0.51J | 0.43J | 0.37J | 0.48J | 0.38J | 0.48J | 0.61J | 0.53J | 0.54J | 0.53J | 0.53J | 0.44J | 0.46J | | Cadmium | 37 | 0.34 | 2.1 | 0.18J | 0.13J | ND | 0.18J | 0.11J | 0.12J | ND | ND | ND | 0.18J | 0.16J | 0.12J | 0.14J | | Calcium | EN | 104,000 | 110,922 | 52,900 | 66,400 | 70,500 | 55,200 | 66,800 | 55,100 | 53,600 | 63,500 | 56,000 | 64,700 | 36,400 | 45,500 | 59,400 | | Chromium | 210 | 31.3 | 23.8 | 17.2 | 16.4 | 15 | 17 | 15.7 | 17.1 | 18.1 | 16.6 | 17.3 | 16.7 | 18 | 15.9 | 16.6 | | Cobalt | 4,700 | 25.4 | 13.1 | 10.7 | 9.8J | 9.4J | 17 | 8.5J | 10.4J | 14.2J | 11J | 11.2J | 9.9J | 9J | 9.6J | 10.1J | | Copper | 2,900 | 55.7 | 44.7 | 29.9 | 23.8 | 25 | 23.9 | 23.2 | 28.7 | 24.1 | 23.3 | 22.8 | 26.3 | 24.3 | 22.3 | 24 | | Iron | EN | 53,577 | 20,936 | 23,600 | 18,300 | 19,400 | 33,400 | 18,600 | 22,100 | 24,800 | 22,400 | 21,500 | 23,200 | 19,100 | 20,100 | 20,200 | | Lead | 400 | 27.9 | 14.9 | 16.6J | 12.2J | 14.3J | 13.8J | 10.8J | 13.6J | 16.6J | 12.2J | 13.5J | 15.3J | 12.7J | 12.3J | 13.2J | | Magnesium | EN | 36,100 | 63,513 | 31,100 | 40,000 | 40,200 | 35,300 | 39,400 | 32,900 | 27,900 | 34,100 | 30,800 | 35,200 | 20,200 | 27,300 | 34,800 | | Manganese | 1,800 | 2191 | 928 | 643 | 626 | 593 | 808 , | 540 | 633 | 1000 | - 789 | 647 | 784 | 516 | 557 | 686 | | Nickel | 1,500 | 66.6 | 34.9 | 26.4 | 22.6 | 23.1 | 32.8 | 24.1 | 25.6 | 26.6 | 25.2 | 25.2 | 23.7 | 22.2 | 23.1 | 24.2 | | Potassium | EN | 17,905 | 3,180 | 2,150J | 2,990J | 2,520J | 2,780J | 2,720J | 2,390J | 2,110J | 2,300J | 2,260J | 2,100J | 1,700J | 1,960J | 2,350J | | Selenium · | 8.8 | 2.11 | NA | ND | 0.28J | ND | 0.31J | ND | 0.16J | 0.36J | 0.4J | 0.33J | 0.41J | ND | ND | ND | | Sodium | EN | NA | . 270 | 274J | 245J | 240J | 295J | 216J | 210J | 142J | 168J | 154J | 171J | 252J | ND | 237J | | Thallium | 5.2 | NA | NA | ND | ND | ND | ND | 0.25J | 0.23J | 1.8J | 1.8J | 1.3J | 1.2J | ND | ND | ND | | Vanadium | 550 | 49.4 | 20.6 | 24.1 | 18.6 | 17.2 | 21.3 | 17.8 | 21.9 | 27.8J | 23.7 | 23.7Ј | 24Ј | 23.2 | 20.8 | 21.4 | | Zinc | 7,200 | 100.46 | 399. | .60.9 | 45 | 46.9 | 58 | 45.5 | 52.5 | 62.2J | 48.6 | 55.6J | 96.5J | 58.8 | 49.9 | 53.9 | | | Class II Soil to | | | | | | | | , | | - | | | | | | | SPLP Metals | GW Migration | | | | | | | | | | | | | | | | | Chromium | 1.0 | NA | NA | 0.14J | ND | 0.017J | ND | ND | 0.016J | 0.013J | 0.01J | 0.038J | 0.014J | ND | 0.019J | 0.026J | | Cobalt | 1.0 | NA | NA | 0.005J | ND | 0.006J | ND | ND | 0.007J | ND | ND | 0.018J | 0.005J | ND | 0.008J | 0.013J | | Lead | 0.1 | NA | NA | 0.0057J | ND | 0.0069J | ND | ND | ND | 0.0067J | 0.0057J | 0.026 | 0.0097 | ND | 0.01 | 0.02 | | Manganese | 10.0 | NA | NA | 0.23 | 0.018J | 0.097 | 0.1 | ND | 0.14 | 0.25 | 0.17 | 0.51 | 0.24 | 0.15 | 0.28 | 0.35 | | Vanadium | 0.1 | NA | NA | 0.019J | ND | 0.02J | 0.006J | ND | 0.021J | 0.021J | 0.016J | 0.056 | 0.023J | 0.007J | 0.027J | 0.038J | ### Notes: Only detected constituents are presented. LSL = Libertyville screening levels. Bkgd = Background. Metals units = mg/kg; SPLP metals units = mg/L. ND = Not detected. J = Estimated value. EN = Essential Nutrient. NA = Not available / not applicable. **Bold** = Concentration exceeds LSL (and background, when background is available). Italics = Concentration exceeds background. Table 5 July 2002 Phase II Delineation Soil Samples South of Magazine Bravo - Organics | | | LTSSB LTSCB | LTSSB | LTSSB | LTSSB | LTSSB | LTSSB | |-------------------------------|------------|-------|--------------|-------|-------|-------|---------|---------------|--------|-------|-------|-------|-------|-------| | Constituent | LSL | B3D18 | B3F14 | B3F16 | B3F18 | B3G10 | B3G12 | B3G14 | B3G14 | B3G16 | B3G18 | B3H14 | B3H16 | B3H18 | | Low Level PAHs | | | | | | | | • • | | - | | . , | | | | Naphthalene | 18,000 | 26 | ND | 13 | 7.4J | 12 | 9.5 | 6.3J | 4.8J | 8.1 | 5.2J | 5.7J | . 81 | 15 | | Acenaphthene | 2,900,000 | 4.0J | 5.0J · | 39 | ND | 7.7J | 13 | 24J | 9J | 10 | ND | 9.4 | 120 | 3.1J | | Fluorene | 2,600,000 | 5.7J | 7.8 | 40 | . ND | 11 | 14 | 34J | 8.6J | 11 | ND | 9.5 | 140 | 3.1J | | Phenanthrene | 1,100,000 | 31 | 50 | 170 | 20 | 68 | 55 | 44J | 19J | 60 | 17 | 42 | 650 | 25 | | Anthracene | 22,000,000 | 3.4J | 14 | 67. | . ND | 14 | 14 | 24J | · 7.1J | 16 | ND | 9.7 | 260 | ND . | | Fluoranthene | 2,300,000 | , 11 | 42 | · 230 | ND | · 79 | 38 | 44J | 17J | 46 | 1.8J | 37 | 760 | 3.1J | | Pyrene | 2,300,000 | 10 | 36 | 140 | 3.5J | 59 | 29 | 35J | 14J | 33 | 3.5J | 25 | 650 | 4.6J | | Chrysene | 62,000 | 11 . | 23 | 76 | 6.8J | 33 | 14 | 16J | 6.7J | 20 | 8.4 | 18 | 270 | 7.5J | | Benzo(a)anthracene | 620 | 4.4J | 19 | 80 | ND | 29 | 12 | 15J | 5.5J | 15 | ND | 13 | 300 | ND | | Benzo(b)fluoranthene | 620 | 6.9J | 25 | 57 | ND · | 28 | 10 | 14J | 5.6J | 9 | 3.0J | 10 | 230 | 5.1J | | Benzo(k)fluoranthene | 6,200 | · ND | ND | 49 | ND | 22 | 8.8 | 9.2J | 3.3J | 9.9 | ND | 9.8 | 180 | 3.3J | | Benzo(a)pyrene | 62 | ND | ND | 67 | ND | 28 | 11 | 13J | 5.2J | ND | - ND | ND | 260 | 4.9J | | Indeno(1,2,3-cd)pyrene | 620 | ND · | 17 | 28 | ND | 20 | 13 | 15J | 10Ј | 15 | ND | 14 | 95 | ND | | Dibenz(a,h)anthracene | 62 | ND · | ND | ND. | ND | 14 | ND | 12J | ND | ND | ND | -11 | 57 | ND· | | Benzo(g,h,i)perylene | 2,300,000 | 4.1J | .11 | 21 | 3.3J | 12 | 5.5J | 6.3J | 2.6J | 9.9 | 4.3J | 7.1J | 96 | 4.3J | | 2-Methylnaphthalene | 290,000 | 22 | 1.0 J | . 8 | . 28 | 4.6J | 5.3J | 4.2J · | 5.6J | 4.73 | 11 | 4.3J | 20 | 26 | | 1-Methylnaphthalene | NA | 15 | ND | 5.4J | 21 | 3.4J | 3.4J | 2.7J | 4.1J | 3.6J | 7.6J | 3.4J | 12 | 20 | | Semivolatile Organic | | | | | 11. | | | | | | , | | | - 42 | | Compounds | | | | | | | | | | | | | | | | 3-Methylphenol/4- | | | | | | | | 4. | | | | | | | | Methylphenol | 240 | NĎ | ND | ND | ND | ND | ND ND |
ND | 630J | ND | ND | ND | ND | ND | | Carbazole | 2,800 | 32J | ND | 35J | ND | ND | ND | ND | 15,000 | ND | ND | ND | . 62J | ND | | 2-Methylnaphthalene | 290,000 | ND | ND | ND · | ND | ND | ND | ND | 5,100 | ND | - ND | ND | ND | ND | | Dibenzofuran | 76,000 | ND | ND | ND | ND | ND | ND . | ND | 10,000 | . ND | ND . | ND | ND | ND | | Di-n-Butylphthalate | 2,300,000 | ND | ND | ND | ND . | ND | ND | ND | ND · | ND | ND | ND | ND | 35J | | Volatile Organic
Compounds | | | | | | | | | | | | | | | | Acetone | 16,000 | 14 | 14 | 14 | 12 | 23 | 10 | 16 | 19 | 12J | 10 | ND | 13 | ND | | Polychlorinated Biphenyls | | | • | | | | None de | tected in any | sample | | | | · . | | Only detected constituents are presented. This data has not been validated. LSL = Libertyville screening levels. Units = $\mu g/kg$ ND = Not detected. J = Estimated value. Bold = Concentration exceeds LSL NA = Not Available # Table 5 July 2002 Phase II Delineation Soil Samples South of Magazine Bravo - Organics | | · | LTSSB | LTSSB | LTSSB . | LTSSB | LTSCB | LTSSB | LTSSB | LTSSB | LTSSB | LTSSB | |-----------------------------------|------------|-------|-------|---------|-------|--------------|---------------|-------|-------|-------|-------| | Constituent | LSL | B3I14 | B3I16 | B3I18 | B3J10 | B3J10 | B3J12 | B3J14 | B3K10 | B3K12 | B3K14 | | Low Level PAHs | | | • | , | | | | | | | | | Naphthalene | 18,000 | 2.7Ј | . ND | 5.8J | 2.0J | 8.0J | ND | ND | 3.2J | 11 | ND | | Acenaphthene | 2,900,000 | ND | ND | ND | ND | 13J | ND | ND | ND | 10 | ND | | Fluorene | 2,600,000 | 1.4J | ND | 2.3J | 2.1J | 19J | ND | ND | 2.3J | . 14 | ND | | Phenanthrene | 1,100,000 | 11 | 7.4Ј | 17 | 12J | 69J | 4.8J | 1.5J | 12 | 99 | 5.4J | | Anthracene | 22,000,000 | ND | 1.8J | 3.2J | 2.6J | 23J | ND | ND | 2.7J | 24 | ND | | Fluoranthene | 2,300,000 | 2.6J | 6.9J | 12 | 15J | 120J | 3.0J | ND | 16 | 150 | ND | | Pyrene | 2,300,000 | 3.6J | 6.7J | 9.8 | 12J | 94J | 3.4J | 3.6J | 10 | 120 | 2.2J | | Chrysene | 62,000 | 3.7J | 4.3J | 7.4J | 7.6J | 42J | 3.5J | 4.6J | 7.6J | 69 | 4.4J | | Benzo(a)anthracene | 620 | ND | 2.9J | 5.7J | 6.7J | 39J | ND | ND | 6.7J | 70 | ND | | Benzo(b)fluoranthene | 620 | 2.9J | 3.4J | 5.2J | 8.1J | 29J | ND | 3.1J | 7.5J | 60 | ND | | Benzo(k)fluoranthene | 6,200 | ND | 2.1J | 4.0J | 5.1J | 28J | ND | ND | 5.0J | 53 | ND | | Benzo(a)pyrene | 62 | ND | 3.4J | ND | 6.9J | 34J | ND | ND · | 5.9J | 62 | ND | | Indeno(1,2,3-cd)pyrene | 620 | ND | ND | 11 | 11J | 24J | ND | ND | ND | 25 | ND | | Dibenz(a,h)anthracene | 62 | ND | ND | ND | ND | 15J | ND | ND | ND . | 19 | ND | | Benzo(g,h,i)perylene | 2,300,000 | 2.2J | 3.1J | 4.1J | 2.9J | 18Ј | ND | 2.9J | 2.4J | . 18 | 2.0J | | 2-Methylnaphthalene | 290,000 | 4.6J | ND | 12 | 2.5J | 4.8J | ND | ND | 1.2J | 3.5J | ND | | 1-Methylnaphthalene | NA | 6.4J | ND | 8.7 | 1.7J | 3.2J | ND | ND | ND | 2.4J | ND | | Semivolatile Organic
Compounds | | | | | | | | | | - | | | Dibenzofuran | 76,000 | ND | ND | ND | ND | ND | ND · | ND | ND | ND | ND | | Carbazole | 2,800 | ND | ND. | ND | 2-Methylnaphthalene | 290,000 | ND | ND | ND | ND | ND ND | ND | ND | ND | . ND | ND. | | Dibenzofuran | 76,000 | ND | Di-n-Butylphthalate | 2,300,000 | ND ND | ND | | Volatile Organic
Compounds | -,000,000 | | | | | | | | | | | | Acetone | 16,000 | 8 | ND | 10 | 11 | 10 | 18 | ND | 12 | 12Ј | 10 | | Polychlorinated Biphenyls | | | | | N | one detected | in any sample | | | | | Notes: Only detected constituents are presented. This data has not been validated. LSL = Libertyville screening levels. Units = $\mu g/kg$ ND = Not detected. J = Estimated value. **Bold** = Concentration exceeds LSL NA = Not Available ### Phase II Delineation ### Soil Samples South of Magazine Bravo - Metals | <u> </u> | <u> </u> | Dlead | Dirad | LTSSB LTSCB | LTSSB | LTSSB | LTSSB | LTSSB | LTSSB | |-------------|---------------|---------|---------|----------|--------|---------------|---------|---------|---------|--------|---------|--------|--------|---------|----------|--------| | G 4'44 | 1 51 | Bkgd | Bkgd | | B3F14 | B3F16 | B3F18 | B3G10 | B3G12 | B3G14 | B3G14 | B3G16 | B3G18 | B3H14 | B3H16 | B3H18 | | Constituent | LSL | 6"-10' | 10'-60' | B3D18 | B3F14 | B3F16 | B3F18 | B3G10 | B3G12 | B3G14 | B3G14 | B3G10 | B3G18 | B3H14 | B3H10 | вэнів | | Metals | | | , | <u> </u> | | | | | | , | | | | | | | | Aluminum | 76,000 | 17,985 | 8,392 | 6,190J | 7,590J | 8,750J | 6,430J | 10,700J | 10,600J | 9,270J | 10,600J | 9,260J | 7,650J | 11,000J | 8,900J | 7,470J | | Arsenic | 0.39 | 29.9 | 11.8 | 8.4J | 11.7J | 7.23 | 6.7J | 7.3J | 7.9J | 7.8J | 6.9J | 8J , | 7.9J | 8.7J | 7.1J | 7.0J | | Barium | 1,200 | 147.6 | 86.38 | 27.7Ј | 73.8 | 50.1 | 31.1J | 57.5 | 47.3 | 40.7J | 61.4 | 45.5 | 33.4J | 64.6 | 53 | 35.6J | | Beryllium | 150 | 1.26 | 0.7 | 0.32J | 0.45J | 0.46J | 0.33J | 0.53J | 0.54J | 0.48J | 0.56J | 0.48J | 0.40J | 0.55J | 0.45J | 0.40J | | Cadmium | 37 | 0.34 | 2.1 | ND | ND | ND | ND | 0.12J | 0.15J | ND - | ND · | 0.086J | ND | 0.090J | 0.096J | ND | | Calcium | EN | 104,000 | 110,922 | 75,200 | 69,600 | 57,300 | 73,900 | 51,800 | 57,600 | 62,400 | 43,100 | 62,100 | 74,900 | 50,400 | 57,400 | 78,200 | | Chromium | 210 | 31.3 | 23.8 | 11.9 | 15 | 15.7 | 12.8 | 17.6 | 17.8 | 16.2 | 17 | 16.3 | 14.4 | 18 | 15.4 | 13.9 | | Cobalt | 4,700 | 25.4 | 13.1 | 8.0J | 10.4J | 9.91 | 9.2J | 9.5J | 9.93 | 9.9J | 9.1J | 9.8J | 10.7J | 14.1 | 9.8J | 9.1J | | Соррег | 2,900 | 55.7 | 44.7 | 19.7 | 23.8 | 23.7 | 21.5 | 23.9 | 25 | 24 | 25.3 | 25.4 | 22.1 | 24.7 | 23.3 | 22.6 | | Iron | · EN | 53,577 | 20,936 | 19,200 | 21,100 | 19,400 | 16,900 | 20,900 | 21,900 | 19,500 | 20,700 | 20,800 | 18,100 | 21,400 | 20,100 | 17,200 | | Lead | 400 | 27.9 | 14.9 | 11.8J | 14.3J | 12. 7J | 10.8J | 15.0J | 13.3J | 12.5J | 12.6J | 12.6J | 11.2J | 13.5J | 14.9J | 11.4J | | Magnesium | EN | 36,100 | 63,513 | 39,900 | 38,100 | 32,300 | 38,800 | 29,500 | 33,600 | 35,800 | 24,700 | 36,100 | 41,000 | 29,500 | 33,100 | 35,500 | | Manganese | 1,800 | 2191 | 928 | 599 . | 703 | 669 | 595 | 636 | 673 | 693 | 487 | 635 | 648 | 602 | 653 | 600 | | Nickel | 1,500 | 66.6 | 34.9 | 19.7J | 23.9J | 24.5J | 22.1J | 24.2J | 25.6J | 24.2J | 23J . | 24.5J | 25J | 28.9Ј | 24Ј | 21.5J | | Potassium | EN | 17,905 | 3,180 | 1,810J | 2,220J | 2,0001 | 1,820J | 2,400J | 2,760J | 2,430J | 1,690J | 2,480J | 2,460J | 2,440J | 1,720J | 2,270J | | Sodium | EN | NA | 270 | 341J | 346J | 358J | 296J | 289J | 292J | 323J | 319J | 330J | 334J | 292J | 336J | 326J | | Thallium | 5.2 | NA | NA | ND | ND | ND | ND | ND- | ND · ND | | Vanadium - | 550 | 49.4 | 20.6 | 17.6 | 22.4 | 22.7 | 18.4 | 26.6 | 25.7 | 23 | 24.1 | 24.1 | 20.3 | 27.1 | 22.6 | 19.7 | | Zinc | 7,200 | 100.46 | 399 | 36.4J | 48.7J | 46.2J | 37.7J | 54.8J | 52J | 46.6J | 50.2J | 53.1J | 43.8J | 54.1J | 50.8J | 37.2J. | | | Class II Soil | | | | | | | | | | | | | | | | | | to GW | | | | | | | | • • | | | | | | | İ | | SPLP Metals | Migration | | | | · | | | | • | | | | | | | İ | | Chromium | 1.0 | NA | NA | 0.016J | 0.012J | 0.016J | 0.018J | ND | 0.013J | ND | 0.017J | ND | ND . | 0.010J | 0.032J ~ | ND | | Cobalt | 1.0 | NA | NA | 0.005J | ND - | 0.005J | 0.006J | ND | ND | ND | 0.005J | ND | . ND | ND | 0.013J | ND | | Lead | 0.1. | NA | , NA | ND | ND | 0.013 | 0.0066J | ND | ND | ND | 0.0061J | ND | ND | ND | 0.02 | ND | | Manganese | 10.0 | NA | NA | 0.086 | 0.16 | 0.18 | 0.12 | 0.11 | 0.17 | 0.058 | 0.17 | 0.063 | 0.027J | 0.19 | 0.36 | 0.057 | | Vanadium | 0.1 | NA | NA | · 0.023J | 0.018J | 0.025J | 0.024J | 0.007J | 0.018J | 0.009J | 0.025J | 0.011J | ND | 0.017J | 0.048J | 0.011J | ### Notes: Only detected constituents are presented. Data has not been validated. LSL = Libertyville screening levels. Bkgd = Background. Metals units = mg/kg; SPLP metals units = mg/L. ND = Not detected. B = Estimated value. EN = Essential Nutrient. NA = Not available / not applicable. **Bold** = Concentration exceeds LSL (and background, when background is available). Italics = Concentration exceeds background. ### Phase II Delineation ### Soil Samples South of Magazine Bravo - Metals | | | Bkgd | Bkgd | LTSSB | LTSSB | LTSSB | LTSSB | LTSCB | LTSSB | LTSSB | LTSSB | LTSSB | LTSSB | |-------------|---------------|---------|---------|---------------|--------|--------|--------------|---------|---------|---------|--------|--------|--------| | Constituent | LSL | 6"-10' | 10'-60' | B3I14 | B3I16 | B3I18 | B3J10 | B3J10 | B3J12 | В3J14 | B3K10 | B3K12 | B3K14 | | Metals | | | | | ^ | | | | | | | 1 | • | | Aluminum | 76,000 | 17,985 | 8,392 | 6,450J | 7,090J | 7,410J | 7,410J | 10,600J | 10,500J | 8,440J | 9,030J | 8,840J | 6,570J | | Arsenic | 0.39 | 29.9 | 11.8 | 6.3J | 7.0J | 6.9J | 7.4J | 7.8J | 8.6J | 7.1J | 2.9J | 11.6Ј | 6.3J | | Barium | 1,200 | 147.6 | 86.38 | 50.9 | 30.3J | 33.1J | 42.8 | 55 | 46.1 | 31.1J | 31.0J | 30.0J | 27.1Ј | | Beryllium | 150 | 1.26 | 0.7 | 0.35J | 0.37J | 0.39J | 0.40J | 0.52J | 0.54J | 0.44J | 0.45J | 0.49J | 0.34J | | Cadmium | 37 | 0.34 | 2.1 | 0.21J | ND | 0.088J | ND | 0.13J | 0.13J | ND | 0.16J | 0.11J | ND | | Calcium | EN | 104,000 | 110,922 | 79,100 | 71,400 | 72,200 | 63,800 | 50,800 | 61,200 | 66,200 | 65,600 | 57,900 | 70,100 | | Chromium | 210 | 31.3 | 23.8 | 13 | 13.3 | 14 | 14 | 17.6 | 18 | 15.5 | 16.1 | 16.2 | 13.1 | | Cobalt | 4,700 | 25.4 | 13.1 | 8.6J | 8.8J | 9.43 | 9.0 J | 9.4J | 8.9J | 9.0J | 9.2J | 11.4 | 9.3 | | Copper | 2,900 | 55.7 | 44.7 | 21.2 | 22.8 | 24.8 | 21.9 | 24.6 | 24.7 | 22.2 | 22.6 | 27.2 | 21.5 | | Iron | EN | 53,577 | 20,936 | 16,900 | 17,400 | 17,500 | 19,100 | 22,000 | 21,300 | 17,900 | 11,600 | 24,300 | 15,700 | | Lead | 400 | 27.9 | 14.9 | 10.6 J | 10.6J | 11.3J | 11.6J | 13.5J | .12.1J | . 10.1J | 13.4J | 17.4J | 11.0J | | Magnesium | EN | 36,100 | 63,513 | 44,500 | 38,900 | 39,200 | 34,800 | 30,100 | 35,500 | 38,100 | 37,900 | 36,300 | 38,000 | | Manganese | 1,800 | 2191 | 928 | 821 | 604 | 608 | 710 | 553 | 604 | 578 | 523 | 490 |
599 | | Nickel | 1,500 | 66.6 | 34.9 | 21.5J | 22.8J | 23.2J | 22.1J | 24.7Ј | 24.3J | 24.3J | 24.2J | 27.5J | 21.6J | | Potassium | EN | 17,905 | 3,180 | 1,870J | 2,160J | 2,350J | 1,890J | 2,710J | 2,910J | 2,620J | 2,790J | 2,290J | 1,900J | | Sodium | EN | NA | 270 | 309J | 344J | 367J | 303J | 316J | 316J | 327J | 255J | 294J | 281J | | Thallium | 5.2 | NA | NA | ND | 1.7 J | ND | ND | ND | ND | ND | ND · | ND | ND | | Vanadium | 550 | 49.4 | 20.6 | 18.8. | 19.5 | 20.7 | 20.1 | 25.6 | 25.1 | 21.2 | 21.3 | 23.9 | 19 | | Zinc | 7,200 | 100.46 | 399 | 59J | 38.6J | 40.2J | 40.1J | 56.2J | 49J | 63.3J | 70J | 56.5J | 38.7J | | • | Class II Soil | | | | | | | | | : | | | | | | to GW | | | | | | , | | | | | | | | SPLP Metals | Migration | | | | | | | | | | | | | | Chromium | 1.0 | NA | · NA | 0.022J | ND | ND | 0.020J | 0.024J | ND | ND | ND | ND | 0.53 | | Cobalt | 1.0 | NA | · NA | 0.0081 | ND | ND | 0.007J | 0.009J | ND | ND | ND | ND | 0.021J | | Lead | 0.1 | NA | NA | 0.012 | ND | ND | 0.012 | 0.012 | ND | ND | ND | ND | 0.017 | | Manganese | 10.0 | NA | NA | 0.29 | 0.034J | 0.030J | 0.22 | 0.12 | 0.030J | ND | ND | ND | 0.33 | | Vanadium | 0.1 | NA | NA | 0.031J | 0.007J | 0.007J | 0.032J | 0.036J | 0.008J | 0.008J | ND | . ND | 0.074 | #### Notes: Only detected constituents are presented. Data has not been validated. LSL = Libertyville screening levels. Bkgd = Background. Metals units = mg/kg; SPLP metals units = mg/L. ND = Not detected. B = Estimated value. EN = Essential Nutrient. NA = Not available / not applicable. **Bold** = Concentration exceeds LSL (and background, when background is available). Italics = Concentration exceeds background. The proposed removal area is shown on Figures 6 and 7. Based on the sampling results, approximately 111 cubic yards of SVOC-contaminated soil will require removal. Because the extent of contamination has not been fully delineated to the west, confirmation sampling results will be used to determine whether adequate soil volume has been removed. As necessary, additional soil will be removed until confirmation sampling results are equal to or less than the LSLs. ### 2.5 National Priorities List Status Magazine Bravo is neither listed nor proposed for listing on the National Priorities List. The LTS has not received, and is not expected to receive, a Hazard Ranking System rating. ### 2.6 Current Actions As a result of the July 2001 investigation, the Navy decided to remove accumulated water from the three magazines, remove all remaining equipment and debris from inside the magazines, clean the interiors, and demolish the magazines. The Navy's Remedial Action Contract contractor, CH2M Hill Constructors (CCI), is performing this work. Details of this project are presented in the Work Plan Addendum No. 1, Nike Missile Magazine Removal, (CCI, 2002). Soil samples collected near Magazine Bravo had SVOC concentrations in excess of LSLs; therefore the site may pose an unacceptable risk to future site users. The anticipated post-cleanup use of the property is storm water detention and recreation. The Village of Vernon Hills desires that the site be remediated for residential/unrestricted use in time to accommodate site redevelopment schedules. Therefore, a time-critical removal action was proposed for Magazine Bravo during a BCT conference call in June 2002. ### 2.7 State and Federal Authorities' Role The United States Environmental Protection Agency and the Illinois Environmental Protection Agency concur with the selected time-critical removal action for this site. ### 3.0 THREAT TO PUBLIC HEALTH, WELFARE, OR THE ENVIRONMENT Because of the time-critical nature of this removal action, a baseline risk assessment was not performed. However, concentrations of SVOCs in soil exceeded LSLs, which are protective of a residential property use scenario. Also, there is a potential for exposure of site trespassers to contaminated soil. Therefore, the Navy will remove all soil at Magazine Bravo in which SVOC concentrations exceed LSLs, which are also protective of site trespassers since they are derived using more conservative residential assumptions for contaminant exposure duration and exposure frequency. The chemicals of concern for this site are the SVOCs listed in Table 1. The cleanup levels for this site will be the SVOC LSLs, which are summarized in Table 7. | Table 7
Magazine Bravo Cleanup Levels (μg/kg) | | | | | |--|---------------|--|--|--| | Compound | Cleanup Level | | | | | Acenaphthene | 2,900,000 | | | | | Acenaphthylene | 120,000 | | | | | Anthracene | 22,000,000 | | | | | Benzo(a)anthracene | 620 | | | | | Benzo(a)pyrene | 62 | | | | | Benzo(b)fluoranthene | 620 | | | | | Benzo(g,h,i)perylene | 2,300,000 | | | | | Benzo(k)fluoranthene | 6,200 | | | | | 4-Bromophenyl-phenylether | NA | | | | | Butylbenzylphthalate | 930,000 | | | | | Carbazole | 2,800 | | | | | 4-Chloro-3-Methylphenol | NA | | | | | 4-Chloroaniline | 700 | | | | | bis(2-Chloroethoxy)Methane | NA | | | | | | Table 7
Magazine Bravo Cleanup Levels (μg/kg) | | | | | |-----------------------------|--|--|--|--|--| | Compound | Cleanup Level | | | | | | bis(2-Chloroethyl)Ether | 0.4 | | | | | | 2-Chloronaphthalene | 110,000 | | | | | | 2-Chlorophenol | 20,000 | | | | | | 4-Chlorophenyl-phenylether | NA | | | | | | 2,2-oxybis(1-Chloropropane) | NA | | | | | | Chrysene | 62,000 | | | | | | Di-n-Butylphthalate | 2,300,000 | | | | | | Di-n-Octyl-Phthalate | 1,200,000 | | | | | | Dibenz(a,h)anthracene | 62 | | | | | | Dibenzofuran | 76,000 | | | | | | 1,2-Dichlorobenzene | 43,000 | | | | | | 1,3-Dichlorobenzene | 1,000 | | | | | | 1,4-Dichlorobenzene | 3,400 | | | | | | 3,3-Dichlorobenzidine | 33 | | | | | | 2,4-Dichlorophenol | 1,000 | | | | | | Diethylphthalate | 470,000 | | | | | | Dimethyl Phthalate | 380,000 | | | | | | 2,4-Dimethylphenol | 9,000 | | | | | | 4,6-Dinitro-2-Methylphenol | . NA | | | | | | 2,4-Dinitrophenol | 200 | | | | | | 2,4-Dinitrotoluene | 0.8 | | | | | | 2,6-Dinitrotoluene | 0.7 | | | | | | bis(2-Ethylhexyl)phthalate | 35,000 | | | | | | Fluoranthene | 2,300,000 | | | | | | Fluorene | 2,600,000 | | | | | | Hexachlorobenzene | 300 | | | | | | Hexachlorobutadiene | 6,200 | | | | | | Hexachlorocyclopentadiene | 10,000 | | | | | | Hexachloroethane | 2,600 | | | | | | Indeno(1,2,3-cd)pyrene | 620 | | | | | | Isophorone | 8,000 | | | | | | 2-Methylnaphthalene | 290,000 | | | | | | Table 7
Magazine Bravo Cleanup Levels (μg/kg) | | | | | |--|---------------|--|--|--| | Compound | Cleanup Level | | | | | 2-Methylphenol | 15,000 | | | | | 4-Methylphenol | 240 | | | | | N-Nitroso-Di-n-Propylamine | 0.05 | | | | | N-Nitrosodiphenylamine | 5,600 | | | | | Naphthalene | 18,000 | | | | | 2-Nitroanilie | 3,500 | | | | | 3-Nitroaniline | NA | | | | | 4-Nitroaniline | NA | | | | | Nitrobenzene | 100 | | | | | 2-Nitrophenol | NA | | | | | 4-Nitrophenol | NA . | | | | | Pentachlorophenol | 140 | | | | | Phenanthrene | 1,100,000 | | | | | Phenol | 100,000 | | | | | Pyrene | 2,300,000 | | | | | 1,2,4-Trichlorobenzene | 53,000 | | | | | 2,4,5-Trichlorophenol | 1,400,000 | | | | | 2,4,6-Trichlorophenol | 770 | | | | Notes: NA Not available. micrograms per kilogram. $\mu {\rm g/kg}$ ### 4.0 ENDANGERMENT DETERMINATION Contaminants from this site, if not addressed by implementing the response action selected in this Action Memorandum, may endanger public health or welfare based on future property use plans. ### 5.0 PROPOSED ACTIONS AND ESTIMATED COSTS The proposed removal action consists of excavation with offsite disposal in a permitted landfill, and site restoration, which was considered the most feasible, timely, and cost-effective remedy. ### 5.1 Description of the Proposed Action The purpose of this time-critical removal action is to mitigate threats to human health and the environment posed by contaminated soil at Magazine Bravo. The selected removal action combines the following general components: - 1. Excavation and stockpiling of the top 10 feet of non-impacted soil (approximately 139 cubic yards) overlying the contaminated soil. - 2. Excavation of an 8-foot depth of contaminated soil (approximately 111 cubic yards) starting 10 feet below ground surface immediately south of Magazine Bravo. - 3. Sampling the soil for hazardous waste characterization. Based on the results, a landfill will be chosen for disposal in accordance with applicable State of Illinois solid waste regulations. - 4. Monitoring of potential hazards during the removal by a certified environmental health and safety officer, and implementation of appropriate precautions to protect human health and the environment. - 5. Excavation of all identified soil to the extent indicated in this report unless further sampling shows otherwise. - 6. Collection of confirmatory samples in the excavated area to ensure that all contaminated soil is removed. Soil will be removed until samples show that soil concentrations are less than LSLs. - 7. Backfilling of the excavated areas with stockpiled soil and additional clean borrow, as needed. The backfilled area will be seeded and mulched to prevent erosion. Precautions will be taken to avoid potential hazards from the excavated areas before they are backfilled. The proposed removal action — excavation of the contaminated soil and disposal in a permitted landfill — would mitigate the public health threat posed by incidental soil ingestion, dermal contact, or dust inhalation. Excavation of contaminated soil also reduces potential contaminant release to the environment. This action provides long-term protection because all of the contaminated soil will be removed from the site. Confirmatory samples will be collected from the bottom and the west wall of the excavation to ensure that all contaminated soil has been removed. Additional soil removal may be necessary
based on the confirmatory sampling results. No post-removal site control activities will be required for this site because all of the contaminated soil will be removed. Removal of contaminated soil to a landfill is technically feasible. Permits will be required for offsite disposal of contaminated soil, which can be easily removed and deposited in a landfill with minimum technical application. Offsite disposal in a secure, permitted landfill is technically viable because landfill designs are based on standard engineering practices. Construction activities such as excavation, backfilling, and seeding are standard tasks, often used for removal actions, and raise few technical concerns. Personnel and materials required for excavation, transportation, and construction are readily available because the LTS is in a metropolitan area. The time required to implement the response action is approximately one week. An implementation consideration for this alternative is weather, including rain, which may pose difficulties and delays during excavation. Public acceptance of this alternative is likely because contaminants would be removed from an uncontrolled environment and placed in an engineered landfill with modern best-achievable technology controls and monitoring equipment. Although fugitive dust is possible during soil excavation, water can be used to control it, if necessary. Other control measures such as cover, hay bales, and silt fences would be implemented to prevent soil erosion in disturbed areas, if necessary. ### 5.2 Contribution to Remedial Performance Implementation of the time-critical removal action would be effective in reducing the potential exposure of human populations to hazardous substances. It constitutes a permanent solution that would ensure the overall protection of human health and the environment by removing all contaminated soil from the site. Confirmatory samples will be collected from the bottom and the west wall of the excavation and compared with the LSLs to ensure that all contaminated soil is removed. Once this proposed removal action is completed, no further action will be required at Magazine Bravo. ### 5.3 Applicable or Relevant and Appropriate Requirements (ARARs) SARA Section 121(d)(2)(A) mandates that CERCLA site remediation comply with all ARARs. Applicable requirements are specific to the site conditions and satisfy all jurisdictional prerequisites of the law or requirements. Relevant and appropriate requirements do not have jurisdictional authority over the site's circumstances, but are meant to address similar situations and, therefore, are suitable for use there. As outlined by the NCP Part 300.415(I), the Department of the Navy may consider the urgency of the situation and the scope of the removal action to be conducted in determining whether compliance with ARARs is practical. ARARs are generally divided into three categories: chemical-specific, location-specific, and action-specific. Chemical-specific ARARs apply to individual contaminants. Location-specific ARARs depend on the contaminant's location and potential restrictions on activities conducted in these areas (e.g., wetlands or floodplains). Action-specific ARARs, which govern the remedial action, are usually technology- or activity-based directions or limitations that control actions taken at CERCLA sites. Some potential ARARs are listed in the preamble to the NCP, as amended in March 1990. Other ARARs and to-be-considered criteria have been added during a search of federal and state environmental requirements and advisories. Table 8 presents ARARs that must be attained or considered as part of this removal action. ### 5.4 Project Schedule The proposed removal action is time-critical because of the need for timely property transfer without deed restriction. Otherwise, construction schedule commitments for redevelopment of the LTS property will be adversely affected. A removal action work and sampling plan will be prepared by CCI. The removal action is scheduled to begin as soon as regulatory agencies' approval is received. Excavation, confirmatory sampling, and soil disposal will take approximately two days. Unvalidated analytical results of the confirmatory samples will be available one to two days after sampling. Validated results will be available four weeks after sampling. These results will be submitted to IEPA and USEPA for review when fully validated confirmatory sampling results for all sampling locations indicate that all contaminated soil above the LSLs has been removed. Backfilling and regrading activities at the site will not begin until IEPA and USEPA concur that the data is usable, complete, and accurate, and that all contaminated soil has been successfully removed. Backfilling and regrading will require approximately one day for completion. If confirmatory sampling indicates that additional excavation is required, the removal action process could continue one to two weeks longer. Final Action Memorandumand Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 | Table 8
Applicable or Relevant and Appropriate Requirements | | | | | | | | |---|-----------------------------|---|--|--|--|--|--| | Requirements | Status | Requirement Summary | Comment | | | | | | | | Federal ARARs | | | | | | | The Defense Base Closure and
Realignment Act of 1990
(P.L. 101-510, 104 Stat. 1808) | Applicable | LTS is closing under BRAC. | Applicable because a removal action is required. | | | | | | CERFA (P.L. 102-426) | Applicable | Regulations controlling inactive hazardous wastes sites. | Applicable because a removal action is required. | | | | | | CERCLA (104, 106, 107, 120, 121, 122) | Applicable | Regulations controlling inactive hazardous wastes sites. | Applicable because a removal action is required. | | | | | | CERCLA 121 (d)(3) | Applicable | CERCLA wastes can only be transferred to facilities that are in compliance with RCRA, TSCA, or other applicable federal and state requirements. | Applicable because a removal action may be required and waste will be hauled offsite to another location. | | | | | | National Contingency Plan,
40 CFR 300 | Applicable | Governs all actions at CERCLA sites. | Applicable because a removal action is required. | | | | | | Executive Order 12580 | Applicable | The Navy has lead authority for CERCLA actions. | Applicable because the Navy is conducting the remedial activities. | | | | | | RCRA Identification of
Hazardous Waste
40 CFR 261 | Applicable | Criteria for identifying those solid wastes subject to regulation as hazardous waste under RCRA. | Wastes will be identified as RCRA hazardous waste or non-hazardous waste prior to, and during, remedial activities. | | | | | | RCRA 40 CFR Parts 264, 265, 268, 270 | Relevant and
Appropriate | Excavation, disposal and handling of hazardous wastes. | A generator who treats, stores, or disposes of hazardous waste onsite must comply with the applicable standards and permit requirements. | | | | | Final Action Memorandumand Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 | | | Table 8 Applicable or Relevant and Appropriate | Requirements | |--|-----------------------------|--|--| | Requirements | Status | Requirement Summary | Comment | | | | Federal ARARs (continued) | | | RCRA Land Disposal
Restrictions
40 CFR 268 | Relevant and
Appropriate | Certain classes of waste are restricted from land disposal without acceptable treatment. | Removal of site-excavated soil for land disposal may trigger the regulation. The excavated soil is presumed to be non-hazardous based on initial samples taken during investigations at this site. | | Clean Water Act General Pretreatment Regulations for Existing and New Sources of Pollution 40 CFR 403 | Applicable | Establishes the limits for pollutant discharge to publicly owned treatment works (POTW) and the requirement for pretreatment, if applicable. | Removal actions may include the discharge of runoff or other flows to a POTW. | | | | State ARARs | | | Illinois Environmental
Protection Act 45 ILCS 5
Sec 22.01 | Applicable | Requires manifest for the transport of special waste. | Any soil removed from the site should be appropriately labeled and manifested. | | Illinois Solid and Special Waste
Management Regulations
IAC, Title 35 Subtitle G
Subpart C Part 807.310 | Applicable | Hazardous or liquid wastes or sludges may be accepted at a sanitary landfill only if authorized by permit. | Applicable to soil removal activities. | | Illinois Solid and Special Waste
Management Regulations IAC,
Title 35 Subtitle G Subpart E
Part 807.501—807.666 | Applicable | General provisions for closure and post-closure of waste management sites. | This site meets all requirements for closure under Illinois regulations. | Final Action Memorandumand Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 | | | Table 8 Applicable or Relevant and Appropriate | Requirements |
--|------------|--|--| | Requirements | Status | Requirement Summary | Comment | | | | State ARARs (continued) | | | Illinois Solid and Special Waste
Management Regulations
IAC, Title 35 Subtitle G
Part 808.121 and 808.302 | Applicable | Requires generators to determine if a waste is a special waste; provides a manifest to the hauler; provides classification of special waste. | When removal is initiated, all waste will be classified and appropriate documents will be provided before the waste leaves the site. | | Illinois Environmental Protection Act Title III Water 415 ILCS 5/12 | Applicable | No person shall cause or allow the discharge of contaminants into the environment to cause water pollution in Illinois, and no person shall deposit any contaminants on land in such place and manner as to create a water pollution hazard. | Groundwater contamination from site remediation is not a concern since contaminants have been on site for a long period of time and have not adversely impacted groundwater at Areas 6A. | | Illinois Water Pollutant
Discharge Act
415 ICLS 25 | Applicable | Prohibits the discharge of oil or other pollutants into any waters. | Applicable if removal actions generate wastewater to be treated onsite prior to discharge to state waters. Water from any remediation activities may be discharged to the POTW. | | Illinois Water Pollution Control
Rules Title 35 Subtitle C
Chapter I Part 301.104 | Applicable | All methods of sample collection, preservation, and analysis shall be consistent with EPA approved methods. | Applicable to all site sampling activities. USEPA methods will be followed. | | Illinois Pretreatment Regulations
Title 35 Subtitle C Chapter 1
Part 310 | Applicable | Establishes requirements for sewer discharge and requires pre-approval from the POTW for discharge. | Water from remediation activities may be discharged to the sewer. Any discharge will comply with the terms of the permit. | | Illinois Effluent Guidelines and
Standards
Title 35 Subtitle C Chapter 1
Part 307 | Applicable | Places restrictions on, and provides standards for, the types, concentrations, and quantities of contaminants that can be discharged to the sewers. | Water from remediation activities may be discharged to the sewer. Any discharge will comply with the terms of the permit. | Final Action Memorandumand Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 | · | | Table 8 Applicable or Relevant and Appropriate | Requirements | |--|------------------|--|---| | Requirements | Status | Requirement Summary | Comment | | | | State ARARs (continued) | | | Illinois Groundwater Quality
Standards
Title 35 Subtitle F Chapter I
Part 620 | Applicable | Establishes classifications and provides the procedures for the management and protection of groundwater. | Applicable if contaminants are left onsite to ensure that groundwater is protected from potential migration of contaminants. This is not likely, however. | | Tiered Approach to Corrective
Action Objectives
Title 35 subtitle G Chapter I
Subchapter F: Risk Based
Cleanup Objectives Part 742 | To be considered | Provides procedures to evaluate the risk to human health posed by environmental conditions, and develops remedial objectives that ensure such risks achieve acceptable levels. | Applicable to any soil removal objectives. Should be considered when setting remediation goals. | A Removal Action Completion Report will be prepared by CCI in accordance with EPA-540/R94/023, *Superfund Removal Procedures, Removal Response Reporting*, and submitted to the BCT for review. It will be finalized within 60 days after the remedial action is implemented. The project schedule is presented in Table 9. | Proposed Proj | Table 9
ect Schedule: Magazine Bravo Ti | me-Critical Remov | al Action | |--|--|-------------------|----------------------------------| | Task | Responsible Party | Time Required | Estimated Completion Date | | Draft Site Investigation Report | Navy/EnSafe Inc. | 30 days | August 30, 2002 | | BCT Review | IEPA & U.S.EPA | 30 days | October 4, 2002 | | Final Site Investigation Report | Navy/EnSafe Inc. | 14 days | October 18, 2002 | | Draft Action Memorandum | Navy/EnSafe Inc. | 14 days | August 9, 2002 | | BCT Review | IEPA & U.S.EPA | 14 days | August 23, 2002 | | Final Action Memorandum | Navy/EnSafe Inc. | 7 days | August 30, 2002 | | Draft Time-Critical Soil Removal
Action Excavation Plan &
Sampling & Analysis Plan | Navy/CH2M Hill Constructors | 14 days | August 9, 2002 | | BCT Review | IEPA & U.S.EPA | 14 days | August 23, 2002 | | Final Time-Critical Soil Removal
Action Excavation Plan &
Sampling & Analysis Plan | Navy/CH2M Hill Constructors | 7 days | August 30, 2002 | | Time-Critical Removal Action & Confirmation Sampling | Navy/CH2M Hill Constructors | 7 days | September 6, 2002 | | Data Validation & Draft Site
Closure Report | Navy/CH2M Hill Constructors | 45 days | October 15, 2002 | | BCT Review | IEPA & U.S.EPA | 30 days | November 15, 2002 | | Final Site Closure Report | Navy/CH2M Hill Constructors | 14 days | November 29, 2002 | | Draft Proposed Plan | Navy/EnSafe Inc. | 14 days | November 29, 2002 | | BCT Review | IEPA & U.S.EPA | 14 days | December 13, 2002 | | Final Proposed Plan | Navy/EnSafe Inc. | 7 days | December 20, 2002 | | Proposed Plan - Public Review | Navy/EnSafe Inc. | 30 days | January 21, 2003 | | Draft Decision Document | Navy/EnSafe Inc. | 30 days | December 20, 2002 | | BCT Review | IEPA & U.S.EPA | 30 days | January 27, 2003 | | Final Decision Document | Navy/EnSafe Inc. | 14 days | February 7, 2003 | | Decision Document Signed | Navy, IEPA, & U.S.EPA | 30 days | March 14, 2003 | #### 5.5 Estimated Costs The estimated costs of the recommended action, excavation with offsite disposal, are summarized in Table 10. | Table 10
Excavation With Offsite Disposal: | Cost Summary | | |---|--------------|----------| | Description | Cost | | | Contractor | | | | Work Plan | • | \$2,000 | | Removal Action Supervision | | \$12,000 | | Closure Report | | \$7,000 | | Home Office Expenses (Contractor) | | \$1,000 | | Fees (Contractor) | | \$3,000 | | Subtotal | | \$25,000 | | Subcontractor | | | | Removal Action | | \$5,500 | | Disposal (Special Waste) | | \$5,000 | | Backfill and Restoration | | \$3,500 | | Analytical | | \$6,000 | | Home Office Expenses (Contractor) | , | \$1,000 | | Fees (Contractor) | | \$2,000 | | Subtotal | | \$23,000 | | 10% Contingency | | \$4,800 | | Total Cost | | \$52,800 | #### Notes: All costs are rounded to the nearest hundred dollars. Costs are based on current data. #### 6.0 EXPECTED CHANGE IN THE SITUATION SHOULD ACTION BE DELAYED OR NOT TAKEN Delayed action at Magazine Bravo will increase the likelihood of contaminant migration from the site. There is also a potential risk of exposure of contaminated soil to future residents, site trespassers, and site workers if no action is taken. In addition, there may be significant costs associated with delay of this action due to construction schedules associated with redevelopment Final Action Memorandum and Site Evaluation NIKE Missile Magazine Bravo in Area 6A Libertyville Training Site August 30, 2002 of this property. Transfer of the property to the community is not possible until the removal action is completed. #### 7.0 OUTSTANDING POLICY ISSUES There are no outstanding policy issues for this removal action. #### 8.0 ENFORCEMENT No enforcement action is in effect or anticipated at Magazine Bravo. The Navy, the lead agency for these sites, is voluntarily investigating and remediating the site. #### 9.0 RECOMMENDATION This decision document represents the selected time-critical removal action for Magazine Bravo in Area 6A at the Libertyville Training Site, Vernon Hills, Illinois. It was developed in accordance with the CERCLA, as amended, and is consistent with the NCP. Conditions at this site meet the NCP section 300.415 (b)(20) criteria for a removal action. This decision is based on the Administrative Record for this site. Agreement with this recommendation will be indicated by signing below. Barbara Nwokike Remedial Project Manager BRAC Cleanup Team Date N:\WP51\LPEARSON\dft action memo.wpd Appendix A Analytical Data #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: | LOW PAH SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB0118 L
S242909*5 S
LTSSBB0118 L
04/26/02 0
05/01/02 0
05/02/02 0
Soil S | TS-C-BB01-18
TSCBB0118
242909*6
TSCBB0118
14/26/02
15/01/02
15/02/02
0il
G/KG |
LTS-S-BB02-18
LTSSBB0218
S242909*3
LTSSBB0218
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BB02-25
LTSSBB0225
S242909*4
LTSSBB0225
04/26/02
05/01/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
S242909*9
LTSSBB0305
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BB03-14
LTSSBB0314
S242909*10
LTSSBB0314
04/26/02
05/01/02
05/02/02
Soil
UG/KG | |--|---|---|---|---|---|--| | CAS # Parameter | 209315 VAL 2 | 09315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | 91-20-3 Naphthalene 91-57-6 2-Methylnaphthalene 208-96-8 Acenaphthylene 83-32-9 Acenaphthene 86-73-7 Fluorene 85-01-8 Phenanthrene | 1.3 J
7.9 U
7.9 U
7.9 U
7.9 U
7.9 U | 1.5 J
8. U
8. U
8. U
8. U
7.1 J | 6.2 J
8.2 J
8.5 U
11.
13. | 2.7 J
1.6 J
8.2 U
2.4 J
3.2 J
8. J | 2.3 J
2. J
7.4 U
2. J
2.8 J | 11.
21.
7.7 U
330.
450.
3800. D | | 120-12-7 Anthracene 206-44-0 Fluoranthene 129-00-0 Pyrene 56-55-3 Benzo(a)anthracene 218-01-9 Chrysene 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene | 7.9 U
3. J
4.8 J
7.9 U
3.9 J
7.9 U | 1.4 J
2.9 J
4.8 J
8. U
3.9 J
8. U | 25.
92.
87.
38.
41.
27.
28. | 2.8 J 7.2 J 8.1 J 2.6 J 4.1 J 2.7 J 2.3 J | 7.4 U
15.
13.
2.4 J
7.1 J
5.3 J
2.7 J | 1600. D
4900, D
4600. D
2000. D
1900. D
1700. D | | 50-32-8 Benzo(a)pyrene
193-39-5 Indeno(1,2,3-cd)pyrene
53-70-3 Dibenz(a,h)anthracene
191-24-2 Benzo(g,h,i)perylene
90-12-0 1-Methyl naphthalene | 7.9 U
7.9 U
7.9 U
2.5 J
7.9 U | 8. U
8. U
8. U
2.3 J
8. U | 20.
33.
22.
19.
20.
5.6 J | 2.5 J
- 8. J
- 8.2 U
- 2.8 J
- 8.2 U | 7.3 J
7.3 J
7.4 U
2.4 J | 1900. 0
530.
370.
650. | | | | ^ | | | | | | | | | | | | | | | | | | | , | | | | | | | | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 2 Time: 14:33 | LOW PAH | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB04-17
LTSSBB0417
S242909*7
LTSSBB0417
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BB04-25
LTSSBB0425
S242909*8
LTSSBB0425
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
S243390*4
LTSSBB3B12
05/14/02
05/17/02
05/21/02
Soil
UG/KG | LTS-S-BB3B+14
LTSSBB3B14
S243390*5
LTSSBB3B14
05/14/02
05/17/02
05/21/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
S243390*6
LTSSBB3B16
05/14/02
05/17/02
05/21/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
S243390*1
LTSSBB3C12
05/14/02
05/17/02
05/21/02
Soil
UG/KG | |---|--|---|--|---|---|---|---| | CAS # | Parameter | 209315 VAL | 209315 VAL | 209722 VAL | 209722 VAL | 209722 VAL | 209722 VAL | | 91-57-6
208-96-8
83-32-9
86-73-7
85-01-8
120-12-7
206-44-0
129-00-0
56-55-3
218-01-9
205-99-2
207-08-9
50-32-8
193-39-5
53-70-3
191-24-2 | Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene 1-Methyl naphthalene | 2.5 J 9.6 7.8 U 2.1 J 3.1 J 13.4 J 7. J 8.3 2.4 J 5.1 J 2.1 J 7.8 U 2. J 7.8 U 2. J 7.8 U 3.1 J 7.8 U 3.1 J 7.8 U 3.1 J 7.6 J | 5.5 J 16. 7.7 U 7.7 U 7.7 U 14. 7.7 U 7.7 U 3. U 7.7 | 1.6 J 0.93 J 7.8 U 7.8 U 7.8 U 4.6 J 7.8 U 3.6 J 7.8 U 3.5 J 7.8 U 3.5 J 7.8 U 1.7 J 7.8 U 7.8 U 7.8 U | 7.8 U 7.2 J 7.8 U 8.7 2.3 J 7.8 U | 7.6 U 7.6 U 7.6 U 7.6 U 7.6 U 7.6 U 2.1 J 7.6 U 2.2 J 7.6 U 9.8 3.2 J 7.6 U 2.5 J 1.6 J 7.6 U 5.1 J 7.6 U | 2.4 J 3.8 J 7.9 U 17. 16. 66. 26. 87. 71. 32. 31. 22. 22. 26. 12. 4.8 J 13. 2.9 J | | 90-12-0 | arthethyt riaphthatene | | | , | | | , | | | | | | | | | | | | | | | - 6 | | | | | | | | | | | | . | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 3 Time: 14:33 | LOW PAH | SAMPLE ID> ORIGINAL ID> CRIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3C-14
LTSSBB3C14
S243390*2
LTSSBB3C14
05/14/02
05/17/02
05/21/02
S011
UG/KG | LTS-S-BB3C-16
LTSSBB3C16
S243390*3
LTSSBB3C16
05/14/02
05/17/02
05/21/02
Soil
UG/KG | LTS-S-BB3D-12
LTSSBB3D12
S244037*5
LTSSBB3D12
06/07/02
06/17/02
06/19/02
Soil
UG/KG | LTS-S-BB3D-14
LTSSBB3D14
S244037*6
LTSSBB3D14
06/07/02
06/17/02
06/19/02
Soil
UG/KG | LTS-S-BB3D-16
LTSSBB3D16
S244037*7
LTSSBB3D16
06/07/02
06/17/02
06/19/02
Soil
UG/KG | LTS-C-BB3D-16
LTSCBB3D16
S244037*8
LTSCBB3D16
06/07/02
06/17/02
06/19/02
Soil
UG/KG | |---|--|--|---|---|---|---|---| | CAS # | Parameter | 209722 VAL | 209722 VAL | 210146 VAL | 210146 VAL | 210146 VAL | 210146 VAL | | 91-57-6
208-96-8
83-32-9
86-73-7
85-01-8
120-12-7
206-44-0
129-00-0
56-55-3
218-01-9
205-99-2
207-08-9
50-32-8
193-39-5
53-70-3
191-24-2 | Benzo(a)anthracene | 7.8 U 0.87 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 6.5 J 7.8 U | 7.6 U 1.8 J 7.6 U | 20. 8.7 7.5 U 18. 15. 71. 30. 85. 75. 35. 34. 24. 23. 28. 13. 4.8 J 15. | 4.3 J 3.6 J 7.7 U 12. 12. 60. 19. 62. 55. 27. 27. 21. 16. 22. 10. 4.1 J 11. | 26. J 7.9 J 7.7 U 74. J 75. J 220. J 120. J 300. J 240. J 120. J 110. J 74. J 92. J 97. J 44. J 94. J | 360. J
700. J
550. J
300. J
260. J
170. J
230. J
120. J
50. J
100. J | | 70-12-0 | | 7.8 ∪ | 0 | 6.5 J | 2.9 J | 94 | 8.9 | | | | | | | | | | | | | | , , , | | | | | | | | | | | | | | | | | * | , | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 4 Time: 14:33 | LOU PAH | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3D-18
LTSSBB3D18
S244969A*9
LTSSBB3D18
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB3E-12
LTSSBB3E12
S243973*3
LTSSBB3E12
06/07/02
06/13/02
06/14/02
Soil
UG/KG | LTS-S-BB3E-14
LTSSBB3E14
S243973*4
LTSSBB3E14
06/07/02
06/13/02
06/14/02
Soil
UG/KG | LTS-S-BB3E-16
LTSSBB3E16
S243973*5
LTSSBB3E16
06/07/02
06/13/02
06/14/02
Soil
UG/KG | LTS-S-BB3F-14
LTSSBB3F14
S244969A*6
LTSSBB3F14
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB3F=16 LTSSBB3F16 S244969A*7 LTSSBB3F16 07/11/02 07/16/02 07/17/02 Soil UG/KG |
---|---|--|---|---|--|--|---| | . CAS # | Parameter | LIBO7 VAL | 210127 VAL | 210127 VAL | 210127 VAL | LIBO7 VAL | LIBO7 VAL | | 91-57-6
208-96-8
83-32-9
86-73-7
85-01-8
120-12-7
206-44-0
129-00-0
56-55-3
218-01-9
205-99-2
207-08-9
50-32-8
193-39-5
53-70-3
191-24-2 | Benzo(a)anthracene | 26. 22. 7.7 U 4. J 5.7 J 31. 3.4 J 11. 10. 4.4 J 11. 6.9 J 7.7 U 7.7 U 7.7 U 7.7 U 7.7 U 4.1 J | 7.8 6.3 J 7.6 U 15. 21. 96. 23. 98. 62. 6.3 J 9.1 5.2 J 7.6 U 3.4 J 1.7 J 7.6 U 4.4 J | 26. 10, 7.9 U 29, 29, 110, 27. 52, 41, 17, 20, 19, 7.9 U 14, 8.3 3, J | 9.1
4.7 J
7.6 U
22.
18.
72.
21.
78.
63.
32.
33.
7.6 U
24.
13. 1
3.2 J
12. | 7.7 U 1. J 7.7 U 5. J 7.8 50. 14. 42. 36. 19. 23. 25. 7.7 U 17. 7.7 U 11. | 13. 8. 7.8. U 39. 40. 170. 67. 230. 140. 80. 76. 57. 49. 67. 28. 7.8 21. 5.4 J | | | | | | | | | | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 5 Time: 14:33 | | LOW PAH | SAMPLE ID> ORIGINAL ID> CRIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3F-18
LTSSBB3F18
S244969A*8
LTSSBB3F18
07/11/02
07/16/02
07/16/02
Soil
UG/KG | LTS-S-BB3G-10
LTSSBB3G10
S244969*13
LTSSBB3G10
07/11/02
07/16/02
07/18/02
S01L
UG/KG | LTS-S-BB3G-12
LTSSBB3G12
S244969*14
LTSSBB3G12
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-14
LTSSBB3G14
S244969*15
LTSSBB3G14
07/11/02
07/16/02
07/16/02
S011
UG/KG | LTS-C-BB3G-14
LTSCBB3G14
S244969*16
LTSCBB3G14
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-16
LTSSBB3G16
S244969A*1
LTSSBB3G16
07/11/02
07/16/02
07/17/02
Soil
UG/KG | |---|---------------------------------|--|--|--|--|--|--|--| | | CAS # | Parameter | LIBO7 VAL | LIBOS VAL | LIBOS VAL | LIB08 VAL | LIBO8 VAL | LIBO7 VAL | | | 91-57-6
208-96-8 | Naphthalene
2-Methylnaphthalene
Acenaphthylene | 7.4 J
28.
7.8 U | 12.
4.6 J
8.1 U | .9.5
5.3 J
7.9 U | 6.3 J
4.2 J
8. U | 4.8 J
5.6 J
7.4 Ų | 8.1
4.7 J
7.8 ∪ | | | 86-73-7
85-01-8 | Acenaphthene Fluorene Phenanthrene Anthracene | 7.8 U
7.8 U
20.
7.8 U | 7. 7
11.
68.
14. | 13.
14.
55.
14. | 24. J
34. J
44. U
24. J | 9. j.
8,6 J
19. J
7,1 J | 10.
11.
60.
16. | | | 206-44-0
129-00-0
56-55-3 | Fluoranthene
Pyrene
Benzo(a)anthracene | 7.8 U
3.5 J
7.8 U | 79.
59.
29. | 38.
29.
12. | 44. J
35. J
15. J | 17. J
14. J
5.5 J | 46.
33.
15. | | | 205-99-2
207-08-9 | Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene | 6.8 J
7.8 U
7.8 U
7.8 U | 33.
28.
22.
28. | 14.
10.
8.8 | 16. J
14. J
9.2 J
13. J | 6.7 J
5.6 J
3.3 J
5.2 J | 20.
9.
9.9
7.8 U | | | 193-39-5
53-70-3
191-24-2 | Indeno(1,2,3-cd)pyrene
Dibenz(a,h)anthracene
Benzo(g,h,i)perylene | 7.8 U
7.8 U
3.3 J | 20)
14.
12. | 7.9 U
7.5 J
5.5 J
3.4 J | 15. J
12. J
6.3 J | 10. J
7.4 UJ
: 2.6 J | 15.
7.8 U
9.9
3.6 U | | | 90-12-0 | 1-Methyl naphthalene | 21. | 3.4 J | 3.4 | 2.7 J | 4.1 | : | | | | | | | | | Ŀ | | | | | | | | <u> </u> | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 6 Time: 14:33 | | ORIGINAL ID> LT AB SAMPLE ID> S2 LD FROM REPORT> LT SAMPLE DATE> 07 DATE EXTRACTED> 07 DATE ANALYZED> 07 VATRIX> SO INITS> UG | TS-S-BB3G-18
TSSBB3G-18
244969A*2
ISSBB3G18
7/11/02
7/16/02
7/17/02
bil
b/KG | LTS-S-BB3H-14
LTSSBB3H14
S244969A*3
LTSSBB3H14
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB3H-16
LTSSBB3H16
S244969A*4
LTSSBB3H16
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB3H-18
LTSSBB3H18
S244969A*5
LTSSBB3H18
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB31-14
LTSSB3114
S244969*10
LTSSB3114
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB31-16
LTSSBB3116
-S244969*11
LTSSBB3116
07/11/02
07/16/02
07/18/02
Soil
UG/KG | |---|---|--|--|--|--|--|---| | CAS # Parameter | EI | B07 VAL | LIBO7 VAL | LIBO7 VAL | LIBO7 VAL | LIB08 VAL | LIBO8 VAL | | 91-20-3 Naphthalene
91-57-6 2-Methylnaphthale
208-96-8 Acenaphthylene
83-32-9 Acenaphthene
86-73-7 Fluorene
85-01-8 Phenanthrene | | 5.2 J
11.
7.6 U
7.6 U
7.6 U | 5.7 J
4.3 J
7.8 U
9.4
9.5
42. | 81.
20.
7.9 U
120.
140.
650. | 15.
26.
7.6 U
3.1 J
3.1 J
25. | 2.7 J
4.6 J
7.6 U
7.6 U | 7.9 U
7.9 U
7.9 U
7.9 U
7.9 U
7.9 U | | 120-12-7 Anthracene 206-44-0 Fluoranthene .129-00-0 Pyrene .56-55-3 Benzo(a)anthracen 218-01-9 Chrysene .205-99-2 Benzo(b)fluoranth | | 7.6 U
1.8 J
3.5 J
7.6 U
8.4 | 9.7
37.
25.
13.
18. | 260.
760.
650.
300.
270. | 7.6 U
3.1 J
4.6 J
7.6 U
7.5 J | 7.6 U
2.6 J
3.6 J
7.6 U
3.7 J
2.9 J | 1.8 J
6.9 J
6.7 J
2.9 J
4.3 J | | 207-08-9 Benzo(k)fluoranth 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)p 53-70-3 Dibenz(a,h)anthra 191-24-2 Benzo(g,h,i)peryl 90-12-0 1-Methyl naphthal | ene
Yrene
cene
ene | 3. J
7.6 U
7.6 U
7.6 U
7.6 U
4.3 J
7.5 J | 9.8
7.8 U
14.
11.
7.1 J | 230.
180.
260.
95.
57.
96. | 3.3 J
4.9 J
7.6 U
7.6 U
4.3 J | 7.6 U
7.6 U
7.6 U
7.6 U
7.6 U
2.2 J | 2.1 J
3.4 J
7.9 U
7.9 U
3.1 J | | 70 tz o r weenyt napritnati | | 1 ml • G | 3.4 | (C.) | 20. | Q (4) | .// / | - | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 7 Time: 14:33 | | | | | magazines | Bravo and Cr | narile Soll Sa | яшртев | | | | |---|--|--|---|---|---|---|--|---
---|--| | | LOW PAH | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3118
\$244969*12
LTSSBB3118
07/11/02
07/16/02
07/18/02
Soil | LTS-5-BB3J-10
LTSSBB3J10
S244969*6
LTSSBB3J10
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-C-BB3J-10
LTSCBB3J10
S244969*7
LTSCBB3J10
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-12
LTSSBB3J12
S244969*8
LTSSBB3J12
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-14
LTSSBB3J14
S244969*9
LTSSBB3J14
07/11/02
07/16/02
07/18/02
Soil
UG/KG | LTS-S-BB3K-10
LTSSBB3K10
S244969*3
LTSSBB3K10
07/11/02
07/16/02
07/17/02
Soil
UG/KG | | | | CAS | # Parameter | | LIBO8 VAL | LIB08 VAL | LIB08 VAL | L1808 VAL | LIBO8 VAL | LIBOS VAL | | | | 91-57-
208-96-
83-32-
86-73-
85-01-
120-12-
206-44-
129-00-
56-55-
218-01-
205-99-
207-08-9
50-32-8
193-39-5
53-70-3 | Naphthalene 2-Methylnaphth Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Pyrene Benzo(a)anthra Chrysene Benzo(b)fluora Benzo(b)fluora Benzo(a)pyrene Indeno(1,2,3-c) Dibenz(a,h)antl Benzo(g,h,i)pe 1-Methyl naphtl | cene nthene nthene d)pyrene hracene rylene | 5.8 J 12. 7.6 U 7.6 U 2.3 J 17. 3.2 J 12. 9.8 5.7 J 7.4 J 5.2 J 4. J 7.6 U 11 | 2. J 2.5 J 7.9 U 7.9 UJ 2.1 J 12. J 2.6 J 15. J 12. J 6.7 J 7.6 J 8.1 J 5.1 J 6.9 J 11. J 7.9 UJ 2.9 J | 8. J
4.8 J
8.1 U
13. J
19. J
69. J
23. J
120. J
94. J
39. J
42. J
29. J
28. J
34. J
24. J
15. J
18. J | 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 4.8 J 7.9 U 3. J 3.4 J 7.9 U 3.5 J 7.9 U | 7.7 U 7.7 U 7.7 U 7.7 U 7.7 U 7.7 U 1.5 J 7.7 U 7.7 U 3.6 J 7.7 U 3.6 J 7.7 U 4.6 J 3.1 U 7.7 | 3.2 J 1.2 J 8.3 U 8.3 U 2.3 J 12. 2.7 J 16. 10. 6.7 J 7.5 J 5. J 5.9 J 8.3 U 8.3 U 8.3 U 8.3 U | | | | | | | | | | - | * | | | | | | | | | | | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 8 Time: 14:33 | LON | PAH | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3K-12
LTSSBB3K12
S244969*4
LTSSBB3K12
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BB3K-14
LTSSBB3K14
\$244969*5
LTSSBB3K14
07/11/02
07/16/02
07/17/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
S242909*13
LTSSBC0212
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-S-BC04-22
LTSSBC0422
S242909*11
LTSSBC0422
04/26/02
05/01/02
05/02/02
Soil
UG/KG | LTS-C-BC04-22
LTSCBC0422
S242909*12
LTSCBC0422
04/26/02
05/01/02
05/02/02
Soil
UG/KG | | |-----|---|---|---|---|--|--|--|--| | | CAS # | Parameter | LIBO8 VAL | LIB08 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | | 91-57-6
208-96-8
83-32-9
86-73-7
85-01-8
120-12-7
206-44-0
129-00-0
56-55-3
218-01-9
205-99-2
207-08-9
50-32-8
193-39-5
53-70-3 | Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene | 11. 3.5 J 7.8 U 10. 10. 14. 99. 24. 150. 120. 70. 69. 60. 53. 62. 25. | 7.6 U | 2.5 J 3.5 J 7.8 U 7.8 U 1.6 J 9.6 1.6 J 5.4 J 5.7 J 1.9 J 4.2 J 2. J 1.8 J 7.8 U 7.8 U 7.8 U | 3.5 J 3.7 J 7.6 U 3. J 3.8 J 24. 7. J 21. 23. 10. 12. 7.2 J 8.2 9.2 11. 12. J 7.4 J | 4.6 J 4.3 J 8. U 4.1 J 4.6 J 32. 9.7 31. 33. 14. 17. 12. 11. 13. 11. 8. UJ | | | | | Benzo(g,h,i)perylene
1-Methyl naphthalene | 18.
2.4 | 2. J
7.6 U | 7.8 U
2.9 J | 2.1 3 | 7.8 J
2.9 J | | | | | | | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 9 Time: 14:33 | | | | | <u> </u> | | • | | | |-----------|--------------------------------------|--|--
--|---|--|---------------------------------|--| | METAL | | SAMPLE ID> | LTS-C-BB01-18 | LTS-S-BB01-18 | LTS-S-BB02-18 | LTS-S-BB02-25 | LTS-S-BB03-05 | LTS-S-BB03-14 | | HCTAL: | | ORIGINAL ID> | LTSCBB0118 | LTSSBB0118 | LTSSBB0218 | LTSSBB0225 | LTSSBB0305 | LTSSBB0314 | | 1 | | LAB SAMPLE ID> | 209315-010 | 209315-009 | 209315-007 | 209315-008 | 209315-013 | 209315-014 | | | | 200 p. 10 p | | | | | | LTSSBB0314 | | | | ID FROM REPORT> | LTSCBB0118 | LTSSBB0118 | LTSSBB0218 | LTSSBB0225 | LTSSBB0305 | | | | | SAMPLE DATE> | 04/26/02 | 04/26/02 | 04/26/02 | 04/26/02 | 04/26/02 | 04/26/02 | | | 5 (a) | DATE EXTRACTED> | 05/06/02 | 05/06/02 | 05/06/02 | 05/06/02 | 05/06/02 | 05/06/02 | | | | DATE ANALYZED> | 05/07/02 | 05/07/02 | 05/07/02 | 05/07/02 | 05/07/02 | 05/07/02 | | | | MATRIX> | Soil | Soil | Soil | Soil | Soil | Soil | | | | UNITS> | MG/KG | MG/KG | MG/KG | MG/KG | MG/KG | MG/KG | | CAS # | Parameter | | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | A Normal State State State | | | | | | | | | 7429-90-5 | | | 4800. | 7300. | 8360. | 8740. | 11600. | 10500. | | 7440-36-0 | Antimony | 하는 이상 없는 것들이 없다. | 1.5 UJ | 1.7 UJ | 1.4 UJ | 1.5 ປປ | 1.7 UJ | 1.6 UJ | | 7440-38-2 | Arsenic | | 7. | 6.5 | 7.8 | 7.9 | 7.8 | 8.2 | | 7440-39-3 | Barium | 그는 남병장보니는 보다 가장 | 27.4 J | 34.7 J | 36.9 J | 39.2 J | 65.3 J | 65.2 J | | | Beryllium | | 0.32 J | 0.38 J | 0.52 J | 0.49 J | 0.6 J | 0.57 J | | 7440-43-9 | 1 ' | | 5 7 1 1005 B00000 x 1 1 x 4 | | Table in a particular transference delegator a interpretar private particular | NATIONAL IN THE SECRET OF THE SECRET SECTION OF THE SEC | 0.26 J | 0.13 J | | | | · · · · · · · · · · · · · · · · · · · | 0.078 U | the programme of the control of the | Provide a respect of the part of the respect of the respect of | 0.077 U | | | | 7440-70-2 | | | 85900. | 77500. | 74900. | 72100. | 48600. | 45800. | | 7440-47-3 | | | 10.1 | 14.7 | 16.8 | 17. | 19.3 | 18.3 | | 7440-48-4 | | • | 5.1 J | 9.5 J | 9.5 | 10.4 | 11. | 10.8 | | 7440-50-8 | Copper | | 22.1 | 22,6 | 21. | 21.8 | 22.9 | 21.5 | | 7439-89-6 | Iron | | 18700. | 18100. | 23500. | 19700. | 21700. | 24500. | | 7439-92-1 | | | 18. J | 13. J | 13.7 J | 13.2 J | 15.5 J | 12.5 J | | 7439-95-4 | | ing a file was after an accepting | 47000. | 39600. | 39700. | 37100. | 26700. | 25700. | | 7439-96-5 | | | 1915 to the colors of the colors | 10. A. P. COSTOTO 000 000 000 A CARDAM CART STATE (1997). | lungangagagagagagagagagagaga, kawa kisisisisisisisis | per processed in the minimum processes with the time to the process of the contract con | 5.5 Z MAGG 505000000 (5 x 1 1 1 | 27 A. J. P. 1980 Science (1997) 11 (1997) 11 (1997) | | | | | 832. | 637. | 641. | 619. | 640. | 802. | | 7439-97-6 | | | 0.058 U | 0.058 U | 0.055 U | 0.06 U | 0.058 U | 0.058 U | | 7440-02-0 | | arte description of the Gradie | 16.1 J | 22.7 J | 24.8 J | 25.1 J | 25.9 J | 25.9 J | | 7440-09-7 | Potassium | | 1660. J | 2160. J | 2530. J | 2700. J | 25 3 0. J | 2110. J | | 7782-49-2 | Selenium | | 0.28 J | 0.24 UJ | 0.26 J | 0.23 UJ | 0.27 J | 0.22 UJ | | 7440-22-4 | | | 0.47 U | 0.52 U | 0.45 U | 0.46 U | 0.5 U | 0.51 U | | 7440-23-5 | | | 295. J | 313. J | 378. J | 345. J | 308. J | 333. J | | 7440-28-0 | | a udilarin eti da 1901 atri estuari e deutitibar arabustat. | And the second s | portion control and the first production and control of the contro | ***************** | a contract, as contracted the contract of the contract and a | | and the second control of | | 4 22 1 | of the South Application of the Con- | india e la fare e la fector | 1.6 J | 2.8 | 2. | 2.1 | 2.2 | 1.7 J | | 7440-62-2 | | 그들도 그렇게 하는 항상이 취해 | 16. | 20.1 | 25.3 | 23.3 | 29.3 | 28,5 | | 7440-66-6 | Zinc | | 39.5 · J | 42.6 J | · 51.4
J | 51.7 J | 74.3 J | 53.3 J | | 1 | | | . | | | | , | | | | | | | * | | | ** | | | • • • • • | | | | | | | | | | " | | | | • | | | | • | | · [| | | | • | | · | 1 | • | | | | ` | | · 1 | | | | | | . | • | . * | | | · . | | | | | | | . 1 | | | · • | | · · | - | | | | · | | | 1 | | | İ | | | | | . | l | | | | . • | | | | I. | - | | 1 | ļ | | | | | | | | | · . | | · | | | | | . [| | | | | | | | | • | | | | | | • | | | | | | 1 | J | | | . [| | | | | | | | | | · | ĺ | | | | | | | | | | | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 10 Time: 14:33 | , | METAL | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-5-8804-17
LTSSB80417
209315-011
LTSSB80417
04/26/02
05/06/02
05/07/02
Soil
MG/KG | LTS-S-BB04-25
LTSSBB0425
209315-012
LTSSBB0425
04/26/02
05/06/02
05/07/02
Soil
MG/KG | LTS-S-BB3B-12
LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3B-14
LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3B-16
LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3C-12
LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/10/02
06/13/02
Soil
MG/KG | |---|--|--|--|--|--|--|--|--| | | CAS # | Parameter | 209315 VAL | 209315 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210127 VAL | | | 7429-90-5
7440-36-0
7440-38-2
7440-39-3
7440-41-7
7440-43-9
7440-47-3
7440-48-4 | Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium | 8640.
1.7 UJ
8.1 44.7 J
0.47 J
0.092 J
69300.
16.3
9.6 J | 9610.
1.4 UJ
6.7
42.1 J
0.53 J
0.075 U
69300.
18:5 | 10400.
1.6 UJ
9.3 J
61.6
0.51 J
0.18 J
52900.
17.2
10.7 | 9310.
1.7 UJ
5.7 J
40.7 J
0.43 J
0.13 J
66400.
16.4
9.8 J | 7980.
1,6 UJ
8.5 J
39.1 J
0.37 J
0.082 U
70500.
15.
9.4 J | 9830.
1.5 UJ
22.3 J
65.8
0.48 J
0.18 J
55200.
17. | | | 7440-50-8
7439-89-6
7439-92-1
7439-95-4
7439-96-5
7439-97-6 | Copper
Iron
Lead
Magnesium
Manganese
Mercury | 22:9
20100.
14:5 J
36400.
646.
0.058 U | 22:3
19600.
13:8
35100.
557.
0.057 Ü | 29.9
23600.
16.6 J
31100.
643.
0.058 U | 23.8
18300.
12.2 J
40000.
626.
0.058 U | 25.
19400.
14-3 J
40200.
593.
0.057 U | 23.9
33400.
13.8
35300.
808.
0.059 U | | | 7440-02-0
7440-09-7
7782-49-2
7440-22-4
7440-23-5
7440-28-0
7440-62-2 | Potassium
Selenium
Silver
Sodium
Thallium | 23.5 J
2310. J
0.23 J
0.52 U
297. J
1.5 J
23.4 | 23.9 J
3110. J
0.24 UJ
0.45 U
345. J
1.8 J
24.2 | 26.4
2150. J
0.15 UJ
0.5 U
274. J
0.19 UJ
24.1 | 22.6
2990. J
0.28 J
0.52 U
245. J
0.23 UJ | 23.1
2520. J
0.17 UJ
0.49 U
240. J
0.21 UJ
17.2 | 32.8
2780. J
0.31 J
0.48 U
295. J
0.22 UJ
21.3 | | | 7440-66-6 | | 47.9 J | 44.4 J | 60.9 | 45. | 46.9 | 58. | | |)
(| | · · | , | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 11 Time: 14:33 | | METAL | SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED DATE ANALYZED MATRIX UNITS | > LTSSBB3C14
> 210127-007
> LTSSBB3C14
> 06/07/02
> 06/10/02
> 06/13/02
> Soil | LTS-S-BB3C-16
LTSSBB3C16
210127-008
LTSSBB3C16
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3D-12
LTSSBB3D12
210146-001
LTSSBB3D12
06/07/02
06/12/02
06/18/02
Soil
MG/KG | LTS-S-BB3D-14
LTSSBB3D14
210146-002
LTSSBB3D14
06/07/02
06/12/02
06/18/02
Soil
MG/KG | LTS-C-BB3D-16
LTSCBB3D16
210146-004
LTSCBB3D16
06/07/02
06/12/02
06/18/02
Soil
MG/KG | LTS-S-BB3D-16
LTSSBB3D16
210146-003
LTSSBB3D16
06/07/02
06/12/02
06/18/02
Soil
MG/KG | |---|---|--|--|--|--|--|--|--| | | CAS # | Parameter | 210127 VAL | 210127 VAL | 210146 VAL | 210146 VAL | 210146 VAL | 210146 VAL | | | 7429-90-5
7440-36-0
7440-38-2
7440-39-3
7440-41-7
7440-43-9
7440-70-2 | Antimony
Arsenic
Barium
Beryllium
Cadmium | 8400.
1.6 UJ
6.9 J
33.8 J
0.38 J
0.11 J | 8.9 J
54.6
0.48 J
0.12 J | 10900.
11.1 J
9.6
83.4
0.61 J
0.058 UJ | 9290.
0.54 UU
7.8
60.6
0.53 J
0.056 UU | 9740.
0.48 UJ
7.7
56.6
0.53 J
0.18 J | 10300.
0,48 UJ
6.9
61.9
0.54 J
0,049 UJ | | | 7440-47-3
7440-48-4
7440-50-8
7439-89-6
7439-92-1
7439-95-4 | Chromium
Cobalt
Copper
Iron
Lead | 66800.
15.7
8.5 J
23.2
18600.
10:8 J
39400. | 55100.
17.1
10.4 J
28.7
22100.
13.6 J
32900. | 53600.
18.1
14.2 J
24.1
24800.
16.6 J
27900. | 63500,
16.6
11. J
23.3
22400.
12.2 J
34100. | 64700.
16.7.
9.9. J
26.3
23200.
15.3 J
35200. | 56000.
17.3
11.2 J
22.8
21500. | | | | Manganese
Mercury
Nickel
Potassium | 540.
0.058 U
24.1
2720. J
0.19 UJ | 633.
0.057 U
25.6
2390. J
0.16 J | 27900.
1000.
0.059 U
26.6
2110. J
0.36 J | 789.
0.058 U
25.2
2300. J
0.4 J | 784.
0.059 U
23.7
2100. J
0.41 J | 30800.
647.
0.058 U
25.2
2260. J | | | 7440-22-4
7440-23-5
7440-28-0
7440-62-2
7440-66-6 | Silver
Sodium
Thallium
Vanadium | 0.51 U
216. U
0.25 J
17.8
45.5 | 0.53 U
210. J
0.23 J
21.9
52.5 | 0.23 U
142. J
1.8 J
27.8 J
62.2 J | 0.22 U
168. U
1.8 J
23.7 J
48.6 J | 0.2 U
171. J
1.2 J
24. J
96.5 J | 0.19 U
154. J
1.3 J
23.7 J
55.6 J | | • | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 12 Time: 14:33 | METÄL | SAMPLE ID | LTSSBB3D18
210701-028
LTSSBB3D18
07/11/02
07/15/02
07/17/02
Soil | LTS-S-BB3E-12
LTSSBB3E12
210127-009
LTSSBB3E12
06/07/02
06/13/02
Soil
MG/KG | LTS-S-BB3E-14
LTSSBB3E14
210127-010
LTSSBB3E14
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3E-16
LTSSBB3E16
210127-011
LTSSBB3E16
06/07/02
06/10/02
06/13/02
Soil
MG/KG | LTS-S-BB3F-14
LTSSBB3F14
210701-025
LTSSBB3F14
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3F-16 .
LTSSBB3F16 .
210701-026 .
LTSSBB3F16 .
07/11/02 .
07/15/02 .
07/17/02 .
Soil .
MG/KG | |--|--|--|--|--|--|--|--| | CAS # Parame | eter | 210701 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210701 VAL | 210701 VAL | | 7429-90-5 Alumir
7440-36-0 Antimo
7440-38-2 Arsen
7440-39-3 Bariur | ony
ic. | 6190. J
194. ÚJ
8.4 J
27.7 J | 11100.
1.7 UJ
6.1 J
67. | 9530.
1.7 UJ
7.2 J
51.4 | 9750.
1.7 UJ
6.9 J
55.3 | 7590. J
1.6 UJ
11.7 J
73.8 | 8750. J
1.7 UJ
7.2 J
50.1 | | 7440-41-7 Beryll
7440-43-9 Cadmit
7440-70-2
Catcit
7440-47-3 Chromi | um
um
um | 0.32 J
0.074 U
75200. | 0.53 J
0.16 J
36400.
18. | 0.44 J
0.12 J
45500.
15.9 | 0.46 J
0.14 J
59400.
16.6 | 0.45 J
0.085 U
69600.
15. | 0.46 J
0.086 U
57300.
15.7 | | 7440-48-4 Cobalt
7440-50-8 Copper
7439-89-6 Iron
7439-92-1 Lead | k terretakan perjebahan terdapan kelalan dan penjebahan berapa dan berapa berapa berapa berapa berapa berapa b
Berapa berapa berap | 8. J
19.7
19200. | 9. J
24.3
19100.
12.7 J | 9.6 J
22.3
20100.
12.3 J | 10.1 J 24.
24.
20200.
13.2 J | 10.4 J
23.8
21100.
14.3 J | 9.9 J
23.7
19400.
12.7 J | | 7439-95-4 Magnes
7439-96-5 Mangar
7439-97-6 Mercur
7440-02-0 Nickel | iese
Y | 39900.
599.
0.057 U
19.7 J | 20200.
516.
0.059 U
22.2 | 27300.
557.
0.056 U
23.1 | 34800.
686.
0.057 U
24.2 | 38100.
703.
0.056 U
23.9 J | 32300.
669.
0.058 U
24.5 J | | 7440-09-7 Potass
7782-49-2 Seteni
7440-22-4 Silver
7440-23-5 Sodium | | 1810. J
1.1 U
0.44 U
341. J | 1700. J
0.23 UJ
0.52 U
252. J | 1960. J
0.16. UJ
∴ 0.52 U
171. U | 2350. J
0.21 UJ
0.53 U
237. J | 2220. J
1.4 U
0.51 U
346. J | 2000. J
1.3 U
0.52 U,
358. J | | 7440-28-0 Thalli
7440-62-2 Vanadi
7440-66-6 Zinc | | 0.37 UJ
17.6
36.4 J | 0.29 UJ
23.2
58.8 | 0.2 UJ
20.8
49.9 | 0.26 UJ
21.4
53.9 | 0.33 UJ
22:4
48.7 J | 0.37 UJ
22.7
46.2 J | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 13 Time: 14:33 | METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | 210701-027 | LTS-S-BB3G-10
LTSSBB3G10
210701-014
LTSSBB3G10
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3G-12
LTSSBB3G12
210701-015
LTSSBB3G12
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3G-14
LTSSBB3G14
210701-016
LTSSBB3G14
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-C-BB3G-14
LTSCBB3G14
210701-017
LTSCBB3G14
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3G-16
LTSSBB3G16
210701-018
LTSSBB3G16
07/11/02
07/15/02
07/17/02
Soil
MG/KG | |---|---|--|---|--|---|---|--|---| | CAS:# | Parameter | | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-97-6 7440-09-7 7782-49-2 7440-23-5 | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium | | 6430. J 1.6 UJ 6.7 J 31.1 J 0.33 J 0.082 U 73900. 12.8 9.2 J 21.5 16900. 10.8 J 38800. 595. 0.057 U 22.1 J 1820. J 0.35 U 0.49 U 296. J | 10700. J 1.5 UJ 7.3 J 57.5 0.53 J 0.12 J 51800. 17.6. 9.5 J 23.9 20900. 15. J 29500. 636. 0.06 U 24.2 J 2400. J 0.94 U 0.47 U 289. J | . 10600. J 1.6 UJ 7.9 J 47.3 0.54 J 0.15 J 57600. 17.8 9.9 J 25. 21900. 13.3 J 33600. 673. 0.057 U 25.6 J 2760. J 1.5 U 0.49 U 292. J | 9270. J 1.6 UJ 7.8 J 40.7 J 0.48 J 0.084 U 62400. 16.2 9.9 J 24. 19500. 12.5 J 35800. 693. 0.058 U 24.2 J 2430. J 1. U 0.5 U 323. J | 10600. J 1,6 UJ 6.9 J 61.4 0.56 J 0.085 U 43100. 17. 9.1 J 25.3 20700. 12.6 J 24700. 487 0.057 U 23. J 1690. J 0.94 U 0.51 U | 9260. J
1.5 UJ
8. J
45.5
0.48 J
0.086 J
62100.
16.3
9.8 J
25.4
20800.
12.6 J
36100.
635.
0.058 U
24.5 J
2480. J
0.94 U
0.48 U
330. J | | 7440-28-0
7440-62-2 | Vanadium | | 0.38 UJ
18.4 | 1.1 UJ
26.6 | 1.2 UJ
25.7 | 1.2 UJ
23. | 1.2 UJ 24.1 | 1.2 UJ
24.1 | | 7440-66-6 | Zinc | | 37.7 J | 54.8 J | 52. J | 46.6 J | 50.2 J | 53.1 J | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 14 Time: 14:33 | METAL | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3G18
210701-019
LTSSBB3G18
07/11/02
07/15/02
07/17/02
Soil | LTS-S-BB3H-14
LTSSBB3H14
210701-020
LTSSBB3H14
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3H-16
LTSSBB3H16
210701-021
LTSSBB3H16
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-883H-18
LTSS8B3H18
210701-022
LTSSBB3H18
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3I-14
LTSSBB3114
210701-011
LTSSBB3114
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3]-16
LTSSBB3116
210701-012
LTSSBB3116
07/11/02
07/15/02
07/17/02
Soil
MG/KG | |---|---|--|--|--|--|--|--| | CAS # Parameter | | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 7429-90-5 Aluminum
7440-36-0 Antimony
7440-38-2 Arsenic
7440-39-3 Barium | | 7650. J
1.7 UJ
7.9 J
33.4 J | 11000. J
1.6 UJ
8.7 J
64.6 | 8900. J
1.7 UJ
7.1 J
53. | 7470. J
1.5 UJ
7. J
35.6 J | 6450. J
1.7 UJ
6.3 J
50.9 | 7090. J
1,6 UJ
7. J
30:3 J | | 7440-41-7 Beryllium
7440-43-9 Cadmium
7440-70-2 Calcium
7440-47-3 Chromium | | 0.4 J
0.086 U
74900. | 0.55 J
0.09 J
50400. | 0.45 J
0.096 J
57400. | 0.4 J
0.08 U
78200. | 0.35 J
0.21 J
79100.
13. | 0.37 J
0.085 U
71400.
13.3 | | 7440-48-4 Cobalt
7440-50-8 Copper
7439-89-6 Iron
7439-92-1 Lead | | 10.7 J
22.1
18100. | 14.1
24.7
21400. | 9.8 J
23.3
20100.
14.9 J | 9.1 J
22.6
17200. | 8.6 J
21.2
16900.
10.6 J | 8.8 J
22.8
17400. | | 7439-95-4 Magnesium
7439-96-5 Manganese
7439-97-6 Mercury | | 41000.
648.
0.057 U | 29500.
602.
0.058 U | 33100.
653.
0.058 U | 35500.
600.
0.057 U | 44500.
821.
. 0.058 U | 38900.
604.
0,058 U | | 7440-02-0 Nicket
7440-09-7 Potassium
7782-49-2 Selenium
7440-22-4 Silver | | 25. J
2460. J
0.93 U
0.51 U | 28.9 J
- 2440. J
- 0.73 U
- 0.51 U | 24. J
1720. J
1.1 U
0.54 U | 21.5 J
2270. J
0.91 U
0.48 U | 21.5 J
1870. J
0.67 U
0.53 U | 22.8 J
2160. J
0.56 U
0.51 U | | 7440-23-5 Sodium
7440-28-0 Thallium
7440-62-2 Vanadium
7440-66-6 Zinc | | 334. J
1.2 UJ
20.3
43.8 J | 292. J
1.2 UJ
27.1
54.1 J | 336. J
1.3 UJ
22.6
50.8 J | 326. J
1.2 UJ
19.7
37.2 J | 309, J
.1.3 UJ
18.8
59. J | 344. J
1.7 J
1995. 38.6 J | | 7440-60-6 Zinc | | 43.0 J | 34.1 3 | 30.0 J | 37.2 J | 39. | 30.0 | • | | | ### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 15 Time: 14:33 | METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTSSBB3118
210701-013
LTSSBB3118
07/11/02
07/15/02
07/17/02
Soil | LTS-S-BB3J-10
LTSSBB3J10
210701-007
LTSSBB3J10
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-C-BB3J-10
LTSCBB3J10
210701-010
LTSCBB3J10
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3J-12
LTSSBB3J12
210701-008
LTSSBB3J12
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3J-14
LTSSBB3J14
210701-009
LTSSBB3J14
07/11/02
07/15/02
07/17/02
Soil
MG/KG | LTS-S-BB3K-10
LTSSBB3K10
210701-004
LTSSBB3K10
07/11/02
07/15/02
07/17/02
Soil
MG/KG | |---
---|--|---|--|--|---|--|--| | - CAS # | # Parameter | | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7440-02-4 | Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury, Nickel Potassium Selenium Silver Sodium Thallium | | 7410. J 1.6 UJ 6.9 J 33.1 J 0.39 J 0.088 J 72200. 14. 9.4 J 7 24.8 17500. 11.3 J 39200. 608. 0.057 U 23.2 J 2350. J 0.49 U 0.5 U 367. J 1.2 UJ 20.7 | 7410. J 1.5 UJ 7.4 J 42.8 0.4 J 0.077 U 63800. 14. 9. J 21.9 19100. 11.6 J 34800. 710. 0.056 U 22.1 J 1890. J 0.86 U 0.46 U 303. J 1.1 UJ 20.1 | 10600. J 1.5 UJ 7.8 J 55. 0.52 J 0.13 J 50800. 17.6 9.4 J 24.6 22000. 13.5 J 30100. 553. 0.058 U 24.7 J 2710. J 0.75 U 0.48 U 316. J 1.2 UJ 25.6 | 10500. J 1.7 UJ 8.6 J 46.1 0.54 J 0.13 J 61200. 18. 8.9 J 24.7 21300. 12.1 J 35500. 604. 0.059 U 24.3 J 2910. J 0.9 U 0.52 U 316. J 1.3 UJ 25.1 | 8440. J 1.6 UJ 7.1 J 31.1 J 0.44 J 0.085 U 66200. 15.5 9. J 22.2 17900. 10.1 J 38100. 578. 0.057 U 24.3 J 2620. J 1. U 0.51 U 327. J 1.2 UJ 21.2 | 9030. J 1.6 UJ 2.9 J 31. J 0.45 J 0.16 J 65600. 16.1 9.2 J 222.6 11600. 13.4 J 37900. 523. 0.059 U 24.2 J 2790. J 0.94 U 0.51 U 255. J 1.2 UJ 21.3 | | 7440-66-6 | Zinc | ** | 40.2 J | 40.1 J | 56.2 J | 49. J | 63.3 J | 70. J | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 16 Time: 14:33 | METAL | | ORIC
LAB
ID I
SAMF
DATE
DATE
MATE | SAMPLE
FROM REF
PLE DATE
E EXTRAC
E ANALYZ
RIX | >> 1D> CORT>> TED> E> | LTS-S-BE
LTSSBB3K
210701-0
LTSSBB3K
07/11/02
07/15/02
07/17/02
Soil
MG/KG | (12
)05
(12 | LTS-S-BB
LTSSBB3K
210701-00
LTSSBB3K
07/11/02
07/15/02
07/17/02
Soil
MG/KG | 14
06
14 | LTS-S-BC02-
LTSSBC0212
209315-017
LTSSBC0212
04/26/02
05/06/02
05/07/02
Soil
MG/KG | 12 | LTS-C-BC04-
LTSCBC0422
209315-016
LTSCBC0422
04/26/02
05/06/02
05/07/02
Soil
MG/KG | 22 | LTS-S-BC042
209315-01
LTSSBC042
04/26/02
05/06/02
05/07/02
Soil
MG/KG | 2
5 | | | |-------------------------------------|-----------------------|---|---|-----------------------|---|---------------------|--|-------------------------|--|-------------|--|----------|--|--------------|-------------------------|--------------------------------------| | CAS # | Parameter | | | | 210701 | VAL | 210701 | VAL | 209315 | VAL | 209315 | VAL | 209315 | VAL | 4660. <u>(2. 124.</u> 2 | <u>, salar iti sanan jabas sa sa</u> | | 7429-90-5
7440-36-0 | Antimony | | | agi pi sigi | 2222 9 1 1 1 1 1 |). J
.6 UJ | 6570
1 | .4 UJ | 9490.
1.7
7.4 | UJ | 4220.
1.7
9.1 | ÜJ | 3100.
1.
5. | 4 UJ | | gmi sødder | | 7440-38-2
7440-39-3
7440-41-7 | Barium | | | | 30 | | 27
0 | .1 J
.34 J | 51.1
0.5 | j
j | 15.8
0.19 | | 12.
0. | 8 J
16 J | | | | 7440-43-9
7440-70-2
7440-47-3 | Calcium | | | | 57900 |).11 J
).
2 | 70100
73 | reduced into a military | 0.12
82700.
16.4 | J | 90600.
8.9 | 8 U | 1.
100000.
7. | | | and a shared for the first of | | 7440-48-4
7440-50-8 | Cobalt
Copper | | | | 11
27 | .4
'.2 | 9.
21 | .3
.5 | 9.5
20.6
19400. | J | 7.3
29.2
20300. | J | 6.
19.
20800. | | at se a le
e | | | 7439-89-6
7439-92-1
7439-95-4 | Lead | | | | 36300 | '.4 J
). | 38000 | . J | 12.1
29300. | J | 8.4
47200. | j | 8.
54000. | | | | | 7439-96-5
7439-97-6
7440-02-0 | Mercury | | | | ka sa arawa ani |).059 U
'.5 J | 599
0
21 | .056 U | 611.
0.058
23.2 | 3 U | 610.
0.05
19.4 | 7 U
J | 14, | 058 U
1 J | i
Hete | | | 7440-09-7
7782-49-2
7440-22-4 | Potassium
Selenium | | .1 s 1 | • | | . J
.1 U
.5 U | 1 | . J
.49 U
.44 U | 1970.
0.31
0.53 | J
J
U | 1020.
0.23
0.53 | | 836.
0.
0. | | e de | | | 7440-23-5
7440-28-0 | Sodium .
Thallium | | | •, | 294
1 | | 281
1
19 | .1 UJ | 249.
2.
24.2 | J
J | 466.
2.1
19.5 | J
J | 318.
1.
17. | | | | | 7440-62-2
7440-66-6 | | : | | | | 5 J | 38. | | 52.4 | J | 51.8 | J | 282. | J | .* | | | | *. | | | | | | * | | - | | | | | ·. · | | | | | ; | ·
- | | | , | | | | | | | | | ·.
• | | | | 1 | | · · | | | | , | | | | | | | - | | | | , | | | | | ÷. | | | | | | | LIBERTYVILLE TRAINING SITE DATALCP3 08/23/02 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: Time: 14:33 | . | | | | | | | | | | |---|--|--|--|--|---|--|--|--|--| | | PCB | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> | LTSCBB0118
209315-010
LTSCBB0118
04/26/02
04/29/02
05/09/02
Soil | LTS-S-BB01-18
LTSSBB0118
209315-009
LTSSBB0118
04/26/02
04/29/02
05/09/02
Soil | LTS-S-BB02-18
LTSSBB0218
209315-007
LTSSBB0218
04/26/02
04/29/02
05/09/02
Soil
UG/KG | LTS-S-BB02-25
LTSSBB0225
209315-008
LTSSBB0225
04/26/02
04/29/02
05/09/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
209315-013
LTSSBB0305
04/26/02
04/29/02
05/09/02
Soil
UG/KG |
LTS-S-BB03-14
LTSSBB0314
209315-014
LTSSBB0314
04/26/02
04/29/02
05/09/02
Soil
UG/KG | | | | | UNITS> | UG/KG
209315 VAL | UG/KG
209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | 7 I. Januari | Parameter | | | | | | 38. · ∪ | 38. U | | | 11104-28-2
11141-16-5
53469-21-9 | Aroclor-1016
Aroclor-1221
Aroclor-1232
Aroclor-1242 | | 38. U
78. U
38. U
38. U | 38. U 78. U 38. U 38. U | 36. U
74. U
36. U | 80. U
39. Ú
39. U | 76. U
38. U | 36. U
77. U
38. U
38. U
38. U | | | | Aroclor-1248
Aroclor-1254 | | 38. ປ
38. ປ | 38. U
38. U | 36. U
36. U | 39. U
39. U | 38. U | 38. U | | | | Aroclor-1260 | | 38. U | 38. U | 36. U | 39. U | 38. U | 38. U | | | | | • • • • • • • • • • • • • • • • • • • | | | | | • | | | | | ٠. | | | | | | | | | | | ** | | | | | | | | | | • | | | | | | | | The second secon | | | | | · · | | | | | | | | | • | | | , , | | | | | | | | | · . | | | | | | | <u>.</u> * | | | | | | | | | | | | | | | | | | a | | | | | | ٠ | | | **
* | | | | | | 3. | | | | | , | · · · · · · | | •. | • | | | | | | | , · · · · · · · · · · · · · · · · · · · | * . | | | | | No. | | | | | | · | | | | | | | | <i>(</i> | | . | | | | | | | | | *. | | | | | | | | | V. S. | | e de la Paris de la Calenda | | . | | | | | | | | | | | | | * + to a | | | | | <u> </u> | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 18 Time: 14:33 | PCB | Parameter | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | 209315-011
LTSSB80417
04/26/02
04/29/02
05/09/02
Soil | LTS-S-BB04-25
LTSSBB04-25
209315-012
LTSSBB0425
04/26/02
04/29/02
05/09/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/13/02
06/19/02
Soil
UG/KG | LTS-S-BB3B-14
LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/13/02
06/19/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/13/02
06/19/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/13/02
06/19/02
Soil
UG/KG | |--|--|---|--|---|--|--|--|--| | 12674-11-2
11104-28-2
11141-16-5
53469-21-9
12672-29-6
11097-69-1 | Aroctor-1016
Aroctor-1221
Aroctor-1232
Aroctor-1242
Aroctor-1248
Aroctor-1254
Aroctor-1260 | | 38. U
76: U
38. U
38. U
38. U
38. U
38. U
38. U | 37. U 76. U 37. | 38. U
77. U
38. U
38. U
38. U
38. U
38. U
38. U | 38. U
76. U
38. U
38. U
38. U
38. U
38. U
38. U | 37. U
75. U
37. U
37. U
37. U
37. U
37. U
37. U | 39. U
79. U
39. U
39. U
39. U
39. U
39. U | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 1 | L | · | | | | | | | | | 1149 | | 105 | <u> </u> | - u | iia ci | | | 711 3 | ampi | | | | | | | | | |---|--|---------------------------------|--|---|--|---|--|-------------------|--|---|-----------------------|-----|----------------|--|----------------------------|----------------|--|----------------------------|--|---|-----------------------|---|--|------------------|---|---------------------------|------------------| | * | PCB | | | | OR
LA
ID
SA
DA
DA
MA | IGINAI
B SAMI
FROM
MPLE I
TE EX
TE AN/
TRIX | ID ID - PLE ID REPOR DATE - RACTEI LYZED | >
>
T>
> | 2101
2101
LTSS
06/0
06/1
06/1
Soil | | , | | LTSSB
21012 | /02
/02 | 6 | LTSSE
21014 | 7/02
7/02 | 12 | LTS-S
LTSSB
21014
LTSSB
06/07
06/14
06/19
Soil
UG/KG | 6-002
B3D14
/02
/02
/02 | 14 | LTS-C-
LTSCBB
210146
LTSCBB
06/07/
06/14/
06/19/
Soil
UG/KG | 3D16
-004
3D16
02
02 | ·6: | LTS-S-
LTSSBB
210146
LTSSBB
06/07/
06/14/
06/19/
Soil
UG/KG | 5-003
3016
02
02 | | | | CAS | ; # i | Paramet | er | | | | | 2101 | 27 | ٠, | /AL | 21012 | 7 | VAL | 21014 | 6 | VAL | 21014 | 5 | VAL | 210146 | | VAL | 210146 | | VAL | | | 12674-11
11104-28
11141-16
53469-21
12672-29
11097-69
11096-82 | 3-2 /
3-5 /
-9 /
3-6 / | Aroclor
Aroclor
Aroclor
Aroclor | -1221
-1232
-1242
-1248
-1254 | | | | | | 38.
77.
38.
38.
38.
38.
38. | ύ
υ
υ
υ
υ | | | 37.
75.
37.
37.
37.
37. | U
U
U
U
U
U | | 39.
79.
39.
39.
39.
39. | U
U
U
U
U
U | | 38.
78.
38.
38.
38.
38.
38. | U
U
U
U
U | | 39.
78.
39.
39.
39.
39. | U
U
U
U | | 38. | U
U
U
U | | | | | | | | · . · | | | | ÷ | • | | | | | | • | 4 | | | | | , | | | | | | | | | | | : | | . • | | . ' | | | | | <u>.</u>
1 | | | | | , | * | | • | | | | . | | | | | | | | | | | | | to energy | _ ; | | | | | | • | | | | | | | | | | | | | | · . · . · | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | | | | | • | | | | | - 1 | | • • | | | | | | | • | | | | | | | | ٠. | | | | | | | | | • | | | | ; | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION ines Bravo and Charlie Soil Samples Page: 20 Time: 14:33 | | | 23/0 | <i>.</i> | | | | | | | | | Mag | gaz | | | | | | d Cl | | | | il s | amp] | les | | | | | | | | | i inc. | , 17. | J J | |---|----------------------|---|--------------------------------------|----------------------------------|--|-----------------------|-------|----------------------|--|-------------------------|--|--|----------------|-----------------------|--|--------------------------------------|--|--------|----------------------------|---------------------------------|--|----------------|------|--------------------------------------|--|----------|-----------------------|----------------------|---|----------|-----------------------|----------------------------------|---|----------------------------------|----------|------------| | | PCB | | | | | | ORIGI | EXTR/
ANAL'
IX | ID
E ID
EPORT
TE
ACTED
YZED | >
>
[>
>
!> | 210
210
LTS:
07/
07/
07/
Soi | | 18
28
18 | 8 | L'
 2'
 0'
 0'
 0'
 50 | TSSB
1012
TSSB
6/07
6/13 | 3/02
2/02 | 2
9 | | LTS
210
LTS
06/
06/ | | 14
10
14 | • | LTSS
2101
LTSS
06/0
06/1 | 883E
27-0
883E
7/02
3/02
9/02 | 11
16 | | 2107
LTSS
07/1 | SBB3F
701-0
SBB3F
11/02
16/02
18/02
L | 25
14 | | LT
21
LT
07
07
07 | TS-S-B
TSSBB3
10701-
TSSBB3
7/11/0
7/16/0
7/18/0
Dil
G/KG | F16
026
F16
02 | 16 | | | | | · C | :AS # | Param | eter | | • | • | | | 210 | 701 | | VAL | 2 | 1012 | 7 | | VAL | 210 | 127 | | VAL | 2101 | 27 | | VAL | 2107 | 701 | | VAL | 21 | 10701 | | įv | AL | | | 11
53
12
11 | 104 -
141 -
469 -
572 -
097 - | 28-2
16-5
21-9
29-6
69-1 | Arocl
Arocl
Arocl
Arocl | or-101
or-122
or-123
or-124
or-125
or-126 | 1
2
2
8
4 | | | | | | 37.
75.
37.
37.
37.
37. | | U
U
U
U
U | | | 39.
78.
39.
39.
39.
39. | | U
U
U
U
U
U | | 36
74
- 36
36
- 36
36
36 | | . U | | 38.
77.
38.
38.
38.
38. | | U
U
U
U
U | | 37
75
37
37
37
37 | | U
U
U
U
U | | 7
3.
3.
3. |
8.
7.
8.
8.
8.
8. | U U U U | | | | | _ | | | | | - | | | | | | | | | | | | | | • | | • | | | | | | | · . | • | | | | | | | l | | | | : | | | | | • | | | | | 4 | | | 7 | | | | | | • | | | | | | | | | | že- | | | ; | | | | • | • | | | | | | | | • | | Î | • | | | | | : | | | | | • | \(\frac{1}{2}\) | | | • | | | | . • | | | | | : | | | | | | | - : | ; .
; | | | • • • • | | | | | | • | | | | , | | | | | | | | | | | Α. | • | | | | ٠ | | | | | • | | | - | | | | , | | | | | | , | i i | | ٠٠. | i . | | | | | | | • | | - | | | | | | | | | ٠ | 4 | | | | | | | | | | | | | | | • | | | | ,f | | | | | | | • | : | : | | | ; | | | | | | | | | | | | | ٠. | | | | ٠. | • | •
••• | • | | | | | - | | • | | | | | | | | | ·
,. : | ن | | | | - | | : | | | | | 4 | | - | • | : • | | | | | | | | | | 7 | LIBERTYVILLE TRAINING SITE DATALCP3 6A & 7 FURTHER INVESTIGATION 08/23/02 Magazines Bravo and Charlie Soil Samples Page: | | | | | | | | | | | | | | | | 1, | ag | | | | . c | <u> </u> | <u></u> | | ui. | _ | | | | |
 | | mp. | | - | sanana da | ndergood dates | 3 8 8 3 5 6 5
3 8 8 8 5 6 6 6 | 388119 | veren. | OND G | Hajjayan | 3887 | | | | 7 7 . | | |----|------------------------------|------------------------------|------------------|--|------------------------------|------------------------------|-------------|--|---|--------------------------------------|--|----------------------|------------------|--|---|---|----------|---|--------|-----|--|---|----------------------------------|-----|------------------|---|---------------------------------|---|---------------------------------|-----------------------|---|---|--|----------------------------|-----------|----------------|---|--------|--|-------|-----------------------|------------------|--|---|---------------------|------------------|-------------| | P | СВ | | | | | | | ORI
LAB
ID
SAM
DAT
DAT
MAT | GIN
FRO
IPLE
E E
E A
RIX | AL
MPL
M R
DA
XTR
NAL | ID -
E II
EPOF
TE -
ACTI
YZEI | :
)
RT -
ED | >
>
>
> | LT
21
LT
07
07
07
07
So | SSBI
070
SSBI
/11,
/16,
/18, | 33F1
1-02
83F1
/02
/02
/02 | 27
18 | 8 | | | LTS
LTS
210
LTS
07/
07/
Soi
UG/ | SBB
701
SBB
11/
16/
19/
l | 3G10
-014
3G10
02
02 | 4 | | | LTS
210
LTS
07/
07/ | SBB
1701
SBB
(11/
(16/
(19/
l | 02 | | | LTS:
LTS:
210
LTS:
07/
07/
07/
Soi
UG/I | SBB3
701-
SBB3
11/0
16/0
19/0 | 016
G14
2
2 | 14 | | LTS
210
LTS
077
077
077
So
UG, | /KG | 3G14
-017
3G14
02
02
02 | | | 1
2
0
0 | _TSSE
2107(
_TSSE
07/1
07/16 | BB3G1
01-01
BB3G1
1/02
6/02
9/02 | 18
16 | | | | | | CAS | # | Para | mete | Γ | | | | | | | | 21 | 070 | 1 | | | VAL | | 210 | 701 | | | VA | L | 210 | 701 | | VA | L | 210 | 701 | | | VAL | 210 | 0701 | | | VAL | 7 | 21070 | 01 | 11:12
(4:00:000) | V | /AL | | - | 1110
1114
5346
1267 | 4-28
1-16
9-21
2-29 | 5-2
5-5
-9 | Aroc
Aroc
Aroc
Aroc
Aroc
Aroc | lor-
lor-
lor-
lor- | 1221
1232
1242
1248 | ?
?
} | | | | | | | | | 37.
76.
37.
37.
37. | | ا | J
J | | | | 39.
79.
39.
39.
39. | | U
U
U
U | | | | 38.
77.
38.
38.
38. | U
U
U
U
U | | | 7
3
3
3 | 8.
7.
8.
8.
8. |)
(| j
J
J | | | 37.
75.
37.
37.
37. | * | ט ט ט ט ט ט ט ט ט ט ט | | Service. | 38.
77.
38.
38.
38. | | ט
ט
ט
ט | | | | 1109 | 5-82 | -5 | Aroc | lor- | 1260 |) | | | | | | | | | 37. | • | ι | J | | | | 39. | | U | | | | 38. | ·U | | | 3 | 8. | ι | J - | | | 37. | | U | | | . 38 | • | . 0 | | | | • | | | | • | | , | | | | | | | | | · · | | | : | | | | | | - | | | | | | | | | | | · | | | | | • | | | | | | | | 4. | | | | | ٠ | - | | • . | | , | | | : | | | | ·
·
·
· | | | | | | | | | | | | | | r | | | | | | | • | | - | | | | | | | | | | | | | | | 1 | | | | | | | | • | * | | | | | - | | | | | | | | | | | • | | | | | | | | | | | | | | • | | • | | | - | | • | | | • | • | | | | | | | -
! | ** | | | | | | | | | • | | | *. | e e | | | | | | . • | | • | · · | | | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Page: Time: 14:33 DATALCP3 08/23/02 Magazines Bravo and Charlie Soil Samples PCB SAMPLE ID ----> LTS-S-BB3G-18 LTS-S-BB3H-14 LTS-S-BB3H-16 LTS-S-BB3H-18 LTS-S-BB31-14 LTS-S-BB31-16 LTSSBB3H14 LTSSBB3116 ORIGINAL ID ----> LTSSBB3G18 LTSSBB3H16 LTSSBB3H18 LTSSBB3114 LAB SAMPLE ID ---> 210701-019 210701-020 210701-021 210701-022 210701-011 210701-012 ID FROM REPORT --> LTSSBB3G18 LTSSBB3H14 LTSSBB3H16 LTSSBB3H18 LTSSBB3I14 LTSSBB3116 SAMPLE DATE ----> 07/11/02 07/11/02 07/11/02 07/11/02 07/11/02 07/11/02 07/16/02 07/16/02 07/16/02 07/16/02 07/16/02 07/16/02 DATE EXTRACTED --> DATE ANALYZED ---> 07/19/02 07/19/02 07/19/02 07/18/02 07/19/02 07/19/02 MATRIX ----> Soil Soil Soil Soil Soil Soil UNITS -----> UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG CAS # Parameter: 210701 210701 210701 210701 210701 210701 VAL VAL VAL VAL VAL VAL 12674-11-2 Aroctor-1016 38. U 38. U 37. 37. U 38. 38. П Ü 11104-28-2 Aroctor-1221 76. 78. 76. U. 75. ្ឋា 77. Ü 77. 11141-16-5 Aroclor-1232 38. 38. 37. 37. 38. 38. 53469-21-9 Aroclor-1242 Ü 38. 38. 37. 37. 38. 12672-29-6 Aroctor-1248 38. 38. 38. 38. 37. 37. 11097-69-1 Aroclor-1254 38. 37. 37. 38. U 38. Ü 11096-82-5 Aroclor-1260 38. 38. 37. 37. 38. 38. LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | Instancial Supplement | 000000000000000000000000000000000000000 | 5000572000000000 | | | 100000000000000000000000000000000000000 | | | | | |---|----------------------|------|------------------------|------|---|--|---|---------------------------------------|-------------|---|---------------|--|---|------------------|--|----------------|--|-------------------------------|----------------|------------------------------|-----| | | PCB | | | | SAMPLE ID
ORIGINAL
LAB SAMPLI
ID FROM RI
SAMPLE DA
DATE EXTR | ID> E ID> EPORT> TE> ACTED> | LTSSBB31
210701-0
LTSSBB3
07/11/02
07/16/02 | 118
013
118
2
2 | 1
1
0 | TS-S-BB3J
TSSBB3J10
210701-007
TSSBB3J10
07/11/02
07/16/02 | | LTSCBB.
210701
LTSCBB.
07/11/
07/16/ | -010
3J10
02
02 | | LTS-S-BB
LTSSBB3J
210701-0
LTSSBB3J
07/11/02
07/16/02
07/19/02 | 12
08
12 | LTS-S-B
LTSSBB3
210701-
LTSSBB3
07/11/0
07/16/0 | J14
009
J14
I2
I2 | LTSSB
21070 | 1-004
B3K10
/02
/02 | | | | | | | | DATE ANAL
MATRIX
UNITS | > | 07/19/02
 Soil
 UG/KG | 2 | l s | 07/19/02
Soil
JG/KG | | 07/19/
 Soil
 UG/KG | UZ | | Soil
UG/KG | | Soil
UG/KG | | Soil
UG/KG | | | | - | CAS | # 1 | Parameter | | U n 113 | | 210701 | VAI | | 210701 | VAL | 210701 | | VAL | 210701 | VAL | 210701 | VAL | 21070 | 1 | VAL | | - | 12674-11 | -2 / | Aroclor-1 | 016 | <u>Soon jaar Siideelika</u>
11. s. oo 31 for oo 51 | | | 7. U. | | : . 37. | · U | | | U | | | order a construction of the control | 57. U
5. U | | 39.
79. | Ü | | | 11141-16 | -5 | Aroclor-1
Aroclor-1 | 232 | | | 37 | | | 74.
37. | U | | 38. | U
U | 38
38 | U | 3 | 57. U
17. U | | 39.
39. | Ü | | . | 12672-29 | 1-6 | Aroclor-1
Aroclor-1 | 248 | | | 37 | 7. U | | 37.
37. | U
U | | 38. | U
U
U | 38
38 |). U | 3 | 57. U
57. U | | 39.
39. | Ü | | | 11097-69
11096-82 | | Aroclor-1
Aroclor-1 | | | | 3;
3; | 7. U
7. U | | 37.
37. | U
U | | | U | 38 | | | 57. U | | 39. | Ū | | : | r. | | | | • | | | | | , | | | | | | • | | • | | | | | : | | | | | | ÷ | | | | | | | | : | • | | : | | | | | | | | | | | | | | | | | ·. | | | | | | | | | • | | | | | | | | | | : | • | | | | | | | | | | | | | | | | , | | • | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | 4 | * . | | | | | | | | | | | | | | | | | | | • | | | | · , | *. * [*] | | | * | | | ·. | • | | | | | | | *:** | : | | | | | | |
 | | | | | | | | | | | | | | - ' | | | | | | • | | | | | :
 | • | | | | | | | | • | | | | | | 1. | | | | • . | • | | • | | | | | | | | i · | | ٠. | ٠. | | | | | | *** | | | | | | | | | , | * | , | | | | | | 4. | · · . | . ** *** ***************************** | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | a , | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 24 Time: 14:33 | РСВ | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-5-8B3K-12
LTSSBB3K12
210701-005
LTSSBB3K12
07/11/02
07/16/02
07/19/02
Soil
UG/KG | LTS-S-BB3K-14
LTSSBB3K14
210701-006
LTSSBB3K14
07/11/02
07/16/02
07/19/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
209315-017
LTSSBC0212
04/26/02
04/29/02
05/09/02
Soil
UG/KG | LTS-C-BC04-22
LTSCBC0422
209315-016
LTSCBC0422
04/26/02
04/29/02
05/09/02
Soil
UG/KG | LTS-S-BC04-22
LTSSBC0422
209315-015
LTSSBC0422
04/26/02
04/29/02
05/09/02
Soil
UG/KG | | |--|--|---|--|--|--|--|--|--| | CAS # | Parameter . | | 210701 VAL | 210701 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | 11104-28-2
11141-16-5
53469-21-9
12672-29-6
11097-69-1 | Aroclor-1016
Aroclor-1221
Aroclor-1232
Aroclor-1242
Aroclor-1248
Aroclor-1254 | | 39. U
78. U
39. U
39. U
39. U
39. U | 36. U
74. U
36. U
36. U
36. U
36. U | 38. U
77. U
38. U
38. U
38. U
38. U | 37. U
76. U
37. U
37. U
37. U
37. U | 37. U
76. U
37. U
37. U
37. U
37. U | | | 11096-82-5 | Aroclor-1260 | | 39. U | 36. U | 38. U | 37. U | 37. U | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 25 | PH | | | Ma ₀ | gazines Bravo and | Charlie Soil S | Samples | | | |---|---------|-------------|---|---|--|--|--------------------------------------|---| | | | | ORIGINAL ID> LTSSBB01 LAB SAMPLE ID> 209315-0 ID FROM REPORT> LTSSBB01 SAMPLE DATE> 04/26/02 MATRIX> Soil | 18 LTSCBB0118
09 209315-010
18 LTSCBB0118
04/26/02 | LTSSBB0218
209315-007
LTSSBB0218
04/26/02 | LTSSBB0225
209315-008
LTSSBB0225
04/26/02 | 209315-013
LTSSBB0305
04/26/02 | LTS-S-BB03-14
LTSSBB0314
209315-014
LTSSBB0314
04/26/02
Soil | | 9999900-09-4 pH 7.6 7.62 6.11 6.99 7.62 | CAS # | # Parameter | 209315 | 209315 | 209315 | 209315 | 209315 | 209315 | | | 00-09-4 | -4 pH | 7 | .6 7.62 | 6.11 | 6.99 | 7.62 | 7.37 | • | | | | | | | | | | . · | Ţ, | | | | | | | | | | ·. | | | | | | | | | DATALCP3
08/23/02 | | | 6 A | BERTYVILLE TI
& 7 FURTHER
Bravo and Ch | RAINING SITE
INVESTIGATION
narlie Soil Sa | amples | | Page: 2
Time: 14:3 | |----------------------|-----------|--|------------------------|---|---|---|---|---| | PH | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | LTSSBB0417
04/26/02 | LTS-S-BB04-25
LTSSBB0425
209315-012
LTSSBB0425
04/26/02
Soil | LTS-S-BB3B-12
LTSSBB3B12
207922-4
LTSSBB3B12
06/07/02
Soil | LTS-S-BB3B-14
LTSSBB3B14
209722-5
LTSSBB3B14
06/07/02
Soil | LTS-S-883B-16
LTSSB83B16
209722-6
LTSSB83B16
06/07/02
Soil | LTS-S-BB3C-12
LTSSBB3C12
209722-1
LTSSBB3C12
06/07/02
Soil | | CAS # | Parameter | | 209315 | 209315 | 209722 | 209722 | 209722 | 209722 | | 999900-09-4 | PH | | 6.18 | 7.73 | 8.15 | 7.91 | 7.82 | 7.67 | | | | | | | | | | | **)** | - | 08/23/02 | 3
2 | • | | 6A | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples | | | | | | | | | |---|----------|---------------|---|---|--|--|---|---|---|---|--|--|--|--| | | PH | | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> | LTSSBB3C14
209722=2
LTSSBB3C14
06/07/02 | LTS-S-BB3C-16
LTSSBB3C16
207922-3
LTSSBB3C16
06/07/02 | LTS-S-BB3D-12
LTSSBB3D12
210146-001
LTSSBB3D12
06/07/02 | LTS-S-BB3D-14
LTSSBB3D14
210146-002
LTSSBB3D14
06/07/02 | LTS-C-BB3D-16
LTSCBB3D16
210146-004
LTSCBB3D16
06/07/02 | LTS-S-BB3D-16
LTSSBB3D16
210146-003
LTSSBB3D16
06/07/02 | | | | | | | | | | MATRIX> | | Soil | Soil | Soil | Soil | Soil | | | | | | t | CA | s # | Parameter | | 209722 | 209722 | 210146 | 210146 | 210146 | 210146 | | | | | | 5 | 999900-0 | 9-4 | рН | <u>ann an Lang en egyti. Med Egyna da etak den Ekkanto fi.</u> | 8.09 | 8.19 | 6.6 | 6.7 | 6.6 | 6.7 | | | | | | | | | • | İ | | | | | · | | 1. | · · · · · · · · · · · · · · · · · · · | | | | | | | | - | | | | | V 7 | | | | | | | | | | | • | • | | | | - | | | | | | | | | | | | | | | | | · , | | | | | | | | - | | 1 | • | | | | • | | | | | | | | | | . • | | . • | | | | | | | | | | | | | | | | | • | | | | | * | | | | | | | | - , , | | * | | | | | | | | | | | | | | | İ | | | | | | • | | | | | | | | | | ĺ | | | | | | | | e e e e e e e e e e e e e e e e e e e | | | | | | | e e e | ľ | | | | | | · | | | | | | | | | | | • | | | | | | | | | | | | | | , 4 | , | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | • | | ·. | | | • | · ' I | * | | | | | | | | | , | | : | | | | | | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: | PH . | ORIGINAL
LAB SAMPL
ID FROM R
SAMPLE DA
MATRIX | D> ID> LTS-S-BB3D-18 LTSSBB3D18 LE ID> LTSSBB3D18 210701-028 LTSSBB3D18 07/11/02> Soil | LTS-S-BB3E-12
LTSSBB3E12
S243973*3
LTSSBB3E12
06/07/02
Soil | LTS-S-BB3E-14
LTSSBB3E14
S243973*4
LTSSBB3E14
06/07/02
Soil | LTS-S-BB3E-16
LTSSBB3E16
S243973*5
LTSSBB3E16
06/07/02
Soil | LTS-S-BB3F-14
LTSSBB3F14
210701-025
LTSSBB3F14
07/11/02
Soil | LTS-S-BB3F-16
LTSSBB3F16
210701-026
LTSSBB3F16
07/11/02
Soil | |--|---|--|--|--|--|---|---| | CAS # | ≇ Parameter | 210701 | 210127 | 210127 | 210127 | 210701 | 210701 | | 9999900-09-4 | рН . | 4.8 | 4.6 | 4.9 | . 5. | 4.8 | 4.8 | | | | | | | | | | | | | | | 4.5 | + 1
+ + + + + + + + + + + + + + + + + + | | | | | | | | | | | | | | i e e e e e e e e e e e e e e e e e e e | · · · · · · · · · · · · · · · · · · · | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: | | | | | · | | Bravo and Ch | arric borr bo | Z.II.DICD | | | |---|--------|--------|-----------|--|--|---
---|---|---|---| | | РH | | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | LTSSBB3F18
210701-027
LTSSBB3F18
07/11/02 | LTS-S-BB3G-10
LTSSBB3G10
210701-014
LTSSBB3G10
07/11/02
Soil | LTS-S-BB3G-12
LTSSBB3G12
210701+015
LTSSBB3G12
07/11/02
Soil | LTS-C-883G-14
LTSC883G14
210701-017
LTSC883G14
07/11/02
Soil | LTS-S-BB3G-14
LTSSBB3G14
210701-016
LTSSBB3G14
07/11/02
Soil | LTS-S-BB3G-16
LTSSBB3G16
210701-018
LTSSBB3G16
07/11/02
Soil | | | · · | CAS # | Parameter | | 210701 | 210701 | 210701 | 210701 | 210701 | 210701 | | Ş | 999900 | 0-09-4 | рН | | 4.9 | . 4.8 | 4.9 | 4.9 | 4.9 | 4.6 | | | | | | • | | | | | | | | | | • | | | | | • | ~. | | | | | | • | | | | | • | | | | | | • | • | | | | | | | | | | | | | | | | | , | | | | | | | • | • | | | | | , | | | | | | | | | | | | | | | | | | • | | | | ··. | | | | - | | | | | | | • | * | • | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | | ` . | | | | | | | | | | • | | | | | | | • , | | | | | | | | | | | | | | : | | | | | | , | | | • | . | | | | | | ĺ | | ĺ | | | • • | | | | | | | - | • | • | • | | | | | | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: | PH. | | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> MATRIX> UNITS> | LTSSBB3G18
210701-019
LTSSBB3G18
07/11/02 | LTS-S-BB3H-14
LTSSBB3H14
210701-020
LTSSBB3H14
07/11/02
Soil | LTS-S-BB3H-16
LTSSBB3H16
210701-021
LTSSBB3H16
07/11/02
Soil | LTS-S-BB3H-18
LTSSBB3H18
210701-022
LTSSBB3H18
07/11/02
Soil | LTS-S-8B3I-14
LTSSBB3I14
210701-011
LTSSBB3I14
07/11/02
Soil | LTS-S-BB31=16
LTSSBB3116
210701=012
LTSSBB3116
07/11/02
Soil | |--------|--------|-----------|--|--|---|---|---|---|---| | | CAS # | Parameter | | 210701 | 210701 | 210701 | 210701 | 210701 | 210701 | | 999990 | 0-09-4 | рН | | 4.7 | 4.7 | 4.8 | 4.8 | 4.9 | 5. | | | | | | | | | | , | | | | | | | | .• | | | | | | | | | | | | | | | | | | • | | | | | | · - | * | 23 | | | | | | | | | | | * 1 | | | | | | | | • | , | | A. | <i>;</i> | | | | | | | | | , | | | | | | , | - | | | | 4 | | | | • | ? ; | | | • | | | | | | | | | | £ | | | | | | | · · · · · · · · · · · · · · · · · · · | | Page: LIBERTYVILLE TRAINING SITE DATALCP3 Time: 14:33 6A & 7 FURTHER INVESTIGATION 08/23/02 Magazines Bravo and Charlie Soil Samples LTS-S-BB3J-14 LTS-S-BB3K-10 LTS-S-BB3J-12 LTS-S-BB3J-10 LTS-C-BB3J-10 LTS-S-BB31-18 SAMPLE ID -----PH LTSSBB3K10 LTSSBB3J12 LTSSBB3J14 LTSSBB3J10 LTSCBB3J10 LTSSBB3118 ORIGINAL ID ----> 210701-004 LTSSBB3K10 210701-009 210701-008 210701-013 210701-007 210701-010 LAB SAMPLE ID ---> LTSSBB3J14 LTSSBB3J12 LTSCBB3J10 LTSSBB3J10 LTSSBB3118 ID FROM REPORT --> 07/11/02 07/11/02 07/11/02 07/11/02 07/11/02 07/11/02 SAMPLE DATE ----> Soil Soil Soil Soil Soil MATRIX ----> Soil UNITS -----> 210701 210701 210701 210701 210701 CAS # Parameter 210701 4.8 4.8 4.9 4.9 5. 4.9 19999900-09-4 pH | 1 | ALCI
23/1 | | | | | | M | agaz | 6A | & 7 | FURT | HER : | INVES' | NG SIT
TIGATI
e Soil | NC | amples | | | . • • | | | Page:
Time: | : 32
: 14:33 | |------|--------------|-------|--------|----|---|----------------------------|--------------------------------------|----------------------|----------|---|----------------|----------------|--|----------------------------|----|---|----|--|----------------------|------------------|-----------|--|-----------------| | PH | | | | | ORIGINAL
LAB SAMP
ID FROM
SAMPLE D
MATRIX - | D> ID> LE ID> REPORT> ATE> | LTSSBE
210701
LTSSBE
07/11/ | 3K12
-005
3K12 | 2 | LTS-S
LTSSB
21070
LTSSB
07/11
Soil | 1-006
33K14 | 4 | LTS-S-
LTSSB0
209315
LTSSB0
04/26/
Soil | -017
0212 | | LTS-S-BC04-
LTSSBC0422
209315-015
LTSSBC0422
04/26/02
Soil | 22 | LTS-C-I
LTSCBC0
209315
LTSCBC0
04/26/0
Soil |)422
-016
)422 | | | | | | | C | CAS # | Parame | er | | | 210701 | | | 21070 | 1 | | 209315 | | | 209315 | | 209315 | | | | | | | 9999 | 900- | 09-4 | рН | | | - * | | 4.9 | <u> </u> | | 4.8 | | | 8.02 | | 7.63 | | | 7.84 | <u> </u> | 1600-0-20 | <u>i e de de la composition della dell</u> | | | , | * ; | | | | • | • | · · | ٠. | | | | | | | | | | | | • | | | | | | | · . | | : | | | | *** | • | | - | | | • | | | | | | | | | | | ; | | | | | | | | | | | • | | 1,6 | | | | | | | | | | | | | | | : | | | | | | • | | | | | | | | | | :
- % | ٠. | | | | | 1.4 | • | | - | | | | | | | | | | * : | | | * * * * * * * * * * * * * * * * * * * | | | | | | | | | , | . • | | | | | | | • | | | · · · . | | | | | | .i | | | ` | | | • | | | | | | .* | ·
· | ~ . | | | | | | | | • | | | | | | | | | • | | | | | | • | | | | | | | | | | 5 (*)
 | | | | | | | | ** | • | | | | ^ , | .) | | | | | | | | • 5- | . ⁶ | | | | | | | | ~1. ¹ | | | | | | | | | | | | | | . | | | | | | | | | | | · | • | | ÷. | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: Time: 14:33 DATALCP3 08/23/02 | SPLP METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-S-BB01-18
LTSSB0118
209315-009
LTSSB0118
04/26/02
05/01/02
05/03/02
Soil
MG/L | LTS-C-BB01-18
LTSCBB0118
209315-010
LTSCBB0118
04/26/02
05/01/02
05/03/02
Soil
MG/L | LTS-S-BB02-18
LTSSBB0218
209315-007
LTSSBB0218
04/26/02
05/01/02
05/03/02
Soil
MG/L | LTS-S-BB02-25
LTSSBB0225
209315-008
LTSSBB0225
04/26/02
05/01/02
05/03/02
Soil
MG/L | LTS*S-BB03-05
LTSSBB0305
209315-013
LTSSBB0305
04/26/02
05/01/02
05/03/02
Soil
MG/L | LTS-S-BB03-14
LTSSBB0314
209315-014
LTSSBB0314
04/26/02
05/01/02
05/03/02
Soil
MG/L | |-------------------------------------|-----------------------------|--|---|---|---
---|---|---| | 7440-47-3
7440-48-4
7439-92-1 | Cobalt
Lead
Manganese | | 209315 VAL 0.033 J 0.01 J 0.017 J 0.21 0.05 U | 209315 VAL 0.05 U 0.05 U 0.05 U 0.03 U 0.03 U | 209315 VAL 0.05 U 0.05 U 0.005 J 0.065 0.05 U | 209315 VAL 0.02 J 0.008 J 0.01 J 0.26 0.05 U | 209315 VAL 0.05 U 0.05 U 0.05 U 0.085 U 0.085 U | 209315 VAL
0.05 U
0.05 U
0.05 U
0.19 0
0.05 U | | `7440-62-2 | Vànad i um: | | 0.043 J | 0.009 J | 0.015 J | 0.028 J | 0.05 U | 0.008 J | √ | | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Brayo and Charlie Soil Samples DATALCP3 08/23/02 Page: 34 Time: 14:33 | ORIGINAL ID> LAB SAMPLE ID> LAB SAMPLE ID> LO9315-011 D FROM REPORT> LTSSBB0417 LTSSBB0425 LTSSBB0425 LTSSBB3B12 LTSSBB3B14 LTSSBB3B14 LTSSBB3B16 LTSSBB3C12 O6/07/02 O6/07/02 O6/07/02 O6/07/02 O6/07/02 O6/17/02 O | | | A STATE OF | Magazınes | Bravo and Ch | ratite port po | zmbres | principal and the second secon | Secretary of the secretary | |--|--|---------------------------------|---------------------------------------|--|--|--|--|--|--| | CAS # Parameter 209313 VAC 209314 <th>SPLP METAL</th> <th></th> <th>ORIGINAL ID</th> <th>LTSSBB0417
209315-011
LTSSBB0417
04/26/02
05/01/02
05/03/02
Soil</th> <th>LTSSBB0425
209315-012
LTSSBB0425
04/26/02
05/01/02
05/03/02
Soil</th> <th>LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/12/02
06/17/02
Soil</th> <th>LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/12/02
06/17/02
Soil</th> <th>LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/12/02
06/17/02
Soil</th> <th>LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/12/02
06/17/02
Soil</th> | SPLP METAL | | ORIGINAL ID | LTSSBB0417
209315-011
LTSSBB0417
04/26/02
05/01/02
05/03/02
Soil | LTSSBB0425
209315-012
LTSSBB0425
04/26/02
05/01/02
05/03/02
Soil | LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/12/02
06/17/02
Soil | LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/12/02
06/17/02
Soil | LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/12/02
06/17/02
Soil | LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/12/02
06/17/02
Soil | | 7440-47-3 Chromium 7440-48-4 Cobalt 7439-92-1 Lead 7439-96-5 Manganese 7440-22-4 Silver 7440-48-4 Cobalt 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.005 | CAS # Pa | rameter | | 209315 VAL | 209315 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210127 VAL | | | 7440-47-3 Ch
7440-48-4 Col
7439-92-1 Le
7439-96-5 Mai
7440-22-4 Si | romium
balt
ad
nganese | | 0.05 U
0.05 U
0.052
0.052 | 0.05 U
0.05 U
0.033 J
0.05 U | 0.005 J
0.0057 J
0.23
0.05 U | 0.05 U
0.0075 U
0.018 J
0.05 U | 0,006 J
0,0069 J
0,097
0,05 U | 0.05 U
0.0075 U
0.1
0.05 U | | | | | | | | | ,
 | • | | | | | | | | . • | | | | 1 | | | 1 . | • | • | | | | | | | | | | | | | | | <u>-</u> | • | | | | | *, | | | | | | | | | | | | • | | | | | | | | | | | · | | | | | | | | | _ | | , | | | | | | | | | view of the second | | | | | | | | | | | | | r . | | | | | | | • | | | | | | | | | · . | | | | | | | ; | | | | | . • | | | | | | | | | | - | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | , | | | | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: 35 Time: 14:33 | | • | | | magazines | Bravo and Ch | larite soit so | ampico | | | |---|---------------------------------------|---|---|--|---|---|---|---|--| | - | SPLP METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | 210127-007
LTSSBB3C14
06/07/02
06/12/02 | LTS-S-BB3C-16
LTSSBB3C16
210127-008
LTSSBB3C16
06/07/02
06/12/02
06/17/02
Soil
MG/L | LTS-S-BB3D-12
LTSSBB3D12
210146-001
LTSSBB3D12
06/07/02
06/13/02
06/14/02
Soil
MG/L | LTS-S-BB3D-14
LTSSBB3D14
210146-002
LTSSBB3D14
06/07/02
06/13/02
06/14/02
Soil
MG/L | LTS-S-BB3D-16
LTSSBB3D16
210146-003
LTSSBB3D16
06/07/02
06/13/02
06/14/02
Soil
MG/L
| LTS-C-BB3D-16:
LTSCBB3D16
210146-004
LTSCBB3D16
06/07/02
06/13/02
06/14/02
Soil
MG/L | | | CAS # | Parameter | | 210127 VAL | 210127 VAL | 210146 VAL | 210146 VAL | 210146 VAL | 210146 VAL | | | 7440-47-3
7440-48-4
7439-92-1 | Chromium
Cobalt
Lead
Manganese
Silver | | 0.05 U
0.05 U
0.0075 U
0.05 U
0.05 U
0.05 U | 0.016 J
0.007 J
0.0075 U
0.14
0.05 U
0.021 J | 0.013 J ²
0.05 U
0.0067 J
0.25
0.05 U
0.021 J | 0.01 J
0.05 U
0.0057 J
0.17
0.05 U
0.016 J | 0.038 J
0.018 J
0.026
0.51
0.05 U
0.056 | 0.014 J
0.005 J
0.0097
0.24
0.05 U
0.023 J | | | • • • • • • • • • • • • • • • • • • • | - | | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: 36 Time: 14:33 | | SPLP METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT -> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3D18
07/11/02
07/16/02
07/17/02
Water | LTS-S-BB3E-12
LTSSBB3E12
210127-009
LTSSBB3E12
06/07/02
06/12/02
06/17/02
Soil
MG/L | LTS-S-BB3E-14
LTSSBB3E14
210127-010
LTSSBB3E14
06/07/02
06/12/02
06/17/02
Soil
MG/L | LTS-S-BB3E-16
LTSSBB3E16
210127-011
LTSSBB3E16
06/07/02
06/12/02
06/17/02
Soil
MG/L | LTS-S-BB3F-14
LTSSBB3F14
210720-024
LTSSBB3F14
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3F-16
LTSSBB3F16
210720-025
LTSSBB3F16
07/11/02
07/16/02
07/17/02
Water
MG/L | |---|--|---------------------------------------|---|--|---|---|---|--|--| | | CAS # | Parameter | | 210720 VAL | 210127 VAL | 210127 . VAL | 210127 VAL | 210720 VAL | 210720 VAL | | | 7440-47-3
7440-48-4
7439-92-1
7439-96-5
7440-22-4
7440-62-2 | Cobalt
Lead
Manganese
Silver | | 0.016 J
0.005 J
0.0075 U
0.086
0.05 U
0.023 J | 0.05 U
0.05 U
0.0075 U
0.015 U
0.05 U
0.007 J | 0.019 J
0.008 J
0.01
0.28
0.05 U
0.027 J | 0.026 J
0.013 J
0.02
0.35
0.05 U
0.038 J | 0.012 J
0.05 U
0.0075 U
0.16
0.05 U
0.018 J | 0.016 J
0.005 J
0.013
0.18
0.05 U
0.025 J | , | • | ale. | | | | | | | | | | | | | | | | | • | **** | | | | | | | | | | | • | | | | L | <u> </u> | L. | <u> </u> | <u> </u> | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 37 Time: 14:33 | | | · · | Magazines | bravo and cr | ortio both | - | 100000000000000000000000000000000000000 | | |--|---------------------------------------|---|---|--|--|--|--|--| | SPLP METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT -> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3F18 | LTS-S-BB3G-10
LTSSBB3G10
210720-013
LTSSBB3G10
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3G-12
LTSSBB3G12
210720-014
LTSSBB3G12
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3G-14
LTSSBB3G14
210720-015
LTSSBB3G14
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-C-BB3G-14
LTSCBB3G14
210720-016
LTSCBB3G14
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3G-16
LTSSBB3G16
210720-017
LTSSBB3G16
07/11/02
07/16/02
07/17/02
Water
MG/L | | CAS # | Parameter | | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | | 7440-47-3
7440-48-4
7439-92-1
7439-96-5
7440-22-4
7440-62-2 | Cobalt
Lead
Manganese
Silver | | 0.018 J
0.006 J
0.0066 J
0.12
0.05 U
0.024 J | 0.05 U
0.05 U
0.0075 U
0.11
0.05 U
0.007 J | 0.013 J
0.05 U
0.0075 U
0.17
0.05 U
0.018 J | 0.05 U
0.05 U
0.0075 U
0.058
0.05 U
0.009 J | 0.017 J
0.005 J
0.0061 J
0.17
0.05 U
0.025 J | 0.05 U
0.05 U
0.0075 U
0.063
0.05 U
0.011 U | 3 | • | : | | | | : | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 3 Time: 14:33 | | | | | | | |
 | | | | | | | | | | | -101 | .gc | | | | | |) <u>. </u> | <u> </u> | • | | | | | -11 | <u> </u> | | | | _ | | | _ | ~j | <u> </u> | | <u> </u> | ٠ | | | | | | | | | | |
 | | | | | | | | |---|-------------------|--------------------------|------------------------------|-------------------|---|-----|------|--|---|--------------------------------------|-------------------------------------|-------------------------------|------------------------|---|---|----------------------------|--|---|--------------------------------------|---------------------|-------------|----|---|-----------------------
--|--|--|---------------------------------|---------------|--------|-----|-----|----------------------------|---|--|--|-------------------|--------|-----|---|----------------------------|--|--|-------------------------------|-------------------------------|-----------|--------|---|----------------------------------|--|---------------------------------|-----------------|---------------|---|----------|------------|---|--|------|------------------------|-------------|-----|--| | 5 | SPLP | HE | TAL | | | | | OR
LA
ID
SA
DA
DA
MA | IGI
BS
FR
MPL
TE
TE
TRI | NA
AM
OM
E
EX
AN
X | L
PLI
RI
DAT
TR/
ALY | ID
EPO
EPO
CT
(ZE | D -
RT
ED
D - | | > | LT
21
LT
07
07 | SSI
072
SSI
/1:
/10
/17 | 1830
10-0
1830
702
702 | 2 | | 3 | | | L
2
0
0
0 | TS:
10
TS:
7/
7/ | SBE
720
SBE
11,
16,
17,
er | B3H
0-C
B3H
/02
/02
/02 | • | | • | | | LT
21
LT
07
07 | SSE
072
SSE
/11
/16
/17
ter | 831
0-0
831
/02
/02
/02 | 2 | | , | | | L1
21
07
07
07 | (S-
(SS
(O7
(SS
7/1
7/1
(1/1
(i/L | BB3
20-
BB3
1/0
6/0
7/0 | SH1
-02
SH1
)2
)2 | 1 | 8 | | | LT
21
LT
07
07
07 | S-S
SSB
072
SSB
/11
/16
/17
ter
/L | B31
0-0
B31
/02
/02 | 14
)10
14 | | | | LTS
210 | SSB
072
SSB
/11
/16
/17
ter | B31
0-0
B31
/02
/02
/02 | 2 | | | | | | Γ | | CA | AS # | ¥ Pa | rame | ter | | | | | | 01.1
105.
3 83 | | | | 21 | 072 | 0 | | | | VA | L | 2 | 107 | 720 |) | | | | VAL | | 21 | 072 | 0 | | | ١ | VAL | | 21 | 07 | 20 | | | | VAL | | 21 | 072 | 0 | | | | VAL | 210 | 72 | 0 | | | ٦, | VAL | | | | 742
743
743 | 0-4
9-9
9-9
0-2 | 48-4
92-1
96-5
22-4 | Col
Lea
Mar | romic
palt
ad
ngane
lver
nadic | ese | | | | | e la | 9. C. | | | | | |)
)
(| 0.05
0.05
0.06
0.06
0.05 | 5
075
27
5 | U
U
U | | | | | | 0
0
0 | 0.0
0.0
0.1
0.1
0.0 | 5
075
9 | U
U | | | | | 0
0
0 | 0.00
0.00
0.02
0.03
0.05
0.05 | 13
2
6
5 | J
U | | | | | | 0.
0.
0. | 05
05
007
057
057 | ั5 เ
เ | j
J | | | | 0
0
0 | .0: | 08
12
7 | J | fire
 | | | 0
0
0 | 0.05 | 5
075
3 4 | U
U
U | | | | | | | | | | į |
 | | | | | | • | | | | | • • • | | ••• | | | | | | | - | | | | | | | | | | | | | | | | | • | | | · · · | | | | | . • | | | | | | | | | | • | | | | | 7. | · | | | | | | • | | | | . | | | | | | | | | | , | | | | | | | | | | | | | | | | | | ٠ | | | _ | 1 | | | - | | | | | | | | | , | | | • | | | | | | | | • | | | | | | • . | | | | : | ٠ | | | | | | | | ٠. | | | | | | • | | | | | | | | ٠., | | | | | | | | | | | | | | * | | | | ÷ | 1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | | • | | | | | · · | | | | | | | | | | | | | | | | | | | • | ,. | | | | ٠. | | | ٠. | | | | | | | | • | | | | | | | , | | | | | •. | | - | | | | | | - | | | | - | | | | | • | | | | | | | • | | | * | | | - | | | | | | | | | • | | | | | | | | | | | | | | | | | | DATALCP3 #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 39 Time: 14:33 | 08/23/02 | • | | 6A
Magazines | & / FURTHER I
Bravo and Ch | narlie Soil S | amples | | 11mc. 14.33 | |--|---------------------|---|---|--|--|--|--|--| | SPLP METAL | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3118
07/11/02
07/16/02
07/17/02
Water | LTS-S-BB3J-10
LTSSB3J10
210720-006
LTSSB3J10
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-C-BB3J-10
LTSCBB3J10
210720-009
LTSCBB3J10
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3J-12
LTSSBB3J12
210720-007
LTSSBB3J12
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3J-14
LTSSBB3J14
210720-008
LTSSBB3J14
07/11/02
07/16/02
07/17/02
Water
MG/L | LTS-S-BB3K-10
LTSSBB3K10
210720-003
LTSSBB3K10
07/11/02
07/16/02
07/17/02
Water
MG/L | | CAS: # | # Parameter | | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | 210720 VAL | | 7440-48-4
7439-92-1
7439-96-5
7440-22-4 | 1 Lead
Manganese | | 0.05 U
0.05 U
0.0075 U
0.03 J
0.05 U
0.007 J | 0.02 J
0.007 J
0.012
0.22
0.05 U
0.032 J | 0.024 J
0.009 J
0.012
0.21
0.05 U
0.036 J | 0.05 U
0.05 U
0.0075 U
0.03 J
0.05 U
0.008 J | 0.05 U
0.05 U
0.0075 U
0.05 U
0.05 U
0.08 J | 0.05 U
0.05 U
0.0075 U
0.05 U
0.05 U
0.05 U | (| 1 | TALCP3
/23/02 | | | | | | | | | Ма | gaz | 6A | & 7 | FU | RTE | IER I | AINII
NVEST | CIGA | TIO | N. | mple | s | | | | | | | | | ge:
ne: 1 | 40
4:33 | |----|---|------------------------------|------------------------------------|---|---|---|--|-----------------|---|--|-----------------|---------------
-----------------------------------|------------------|------------------------------------|-------|--|---|-----|-----|---|--|-------------|-----|----------------|---------------------------------|------------|--------|---|-----|--------------|--------------------------| | SP | LP' METAL | | | | SAMPIORIG
CRIG
LAB:
ID F
SAMPI
DATE
DATE
MATR
UNIT: | INAL
SAMPL
ROM R
LE DA
EXTR
ANAL
IX | ID
E ID
EPORT
TE
ACTED
YZED | >

>
> | 210
210
LTS:
07/
07/
07/
Wate | SBB3k
720-0
SBB3k
11/02
16/02
17/02
er | 104
(12
) | 2 | LTS:
210
LTS:
07/
07/ | | 14
05
14 | | LTS-S-LTSSBC
209315
LTSSBC
04/26/
05/01/
05/03/
Soil
MG/L |)212
-017
)212
)2
)2 | 2 | | TS-S-
TSSBC
209315
TSSBC
04/26/
05/01/
05/03/
Soil
MG/L | 0422
-015
0422
02
02 | 22 | | LTSCB
20931 | /02 | | | | | | | | | CAS # | Para | meter | | | | | | 210 | 720 | | VAL | 210 | 720 | | VAL | 209315 | | VAI | | 209315 | | V | VL. | 20931 | 5 | | VAL | | | | 1 17
<u>2002 1353</u> | | | 7440-47-3
7440-48-4
7439-92-1
7439-96-5
7440-22-4 | Chro
Cobe
Leac
Mang | omium
alt
d
ganese
ver | | | | | | | (
(
(
(| 0.007!
0.05 | บ
5 บ
บ | | 0
0
0
0 | .053
.021
.017
.33
.05 | | | 0.05
0.05
0.05
0.19
0.05
0.007 | U | | | 0.05
0.05
0.05
0.05
0.05
0.05 | U
U
U | | | 0.0
0.0
0.0
0.0
0.0 | 5 ເ
5 ເ | j
J | | | | | | | | | | | | · . | | | | | | | | | | | | | ; | . * | | | , | | | | • | | | · . | | | | | . , | | | | ŀ | · | | | . 6 | | | | | | | | | : | | | | | | | | | A _ | | | * . | | | | | | | | | | | • . | | : | | • | | | | | | | | | | | | | | | | • | | | | | | | | | | | | ; · | | | • : | | | | | | | ٠. | • | | * . | | 2 | * | | | | | | | | , | | , | • | | | | | | | | | | | | | • . | | | | | | | | | | | • | | | • | .• | • | | | | | | | | | | | | | | . - | | | | | · | | | | | | | | | | | | | • | | | | | | | | | | • | | ٠. ٠ | | | | | • | | | . • | | | • | | • | | , | | | ·
v | A | | ,, | | | | | | | | | | | | | | ÷ | | | • | • | • | | | • | | *** Validation Complete *** # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 41 Time: 14:33 | SVOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB01-18
LTSSBB0118
S242909*5
LTSSBB0118
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-C-BB01:18
LTSCBB0118
S242909*6
LTSCBB0118
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB02-18
LTSSB0218
S242909*3
LTSSB0218
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB02-25
LTSSBB0225
S242909*4
LTSSBB0225
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
S242909*9
LTSSBB0305
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB03-14
LTSSBB0314
S242909*10
LTSSBB0314
04/26/02
05/01/02
05/03/02
Soil
UG/KG | |--|---|---|---|---|---|---|---| | CAS # | Parameter | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | 108-95-2 | Phenol | 390. U | 390. U | 420. U | 400. U | 370. U | 380. ປ
380. ປ | | 111-44-4 | bis(2-Chloroethyl)ether | 390. U | 390. U | 420. U | 400. U | 370. U | VOLUME TO A STATE OF THE | | 95-57-8 | 2-Chlorophenol | 390. U | 390. U - | 420. U | 400. U | 370. U | 380. U | | | 2-Methylphenol (o-Cresol) | 390. U | 390. U | 420. U | 400. U | 370. U | 380. ∪
380. ∪ | | 108-60-1 | 2,21-oxybis(1-Chloropropane)/bis(2- | chlor 390. U | 390. U | 420. U | 400. U | 370. U '
370. U | 380. U | | | 3-Methylphenol/4-Methylphenol | 39 0. U | 390. U | 420, U | 400. U | 370. U | 380. U | | | N-Nitroso-di-n-propylamine | 390. U | 390. U | 420. U | 400. U 400. U | 370. U | 380. U | | , 150 SUTLAND | Hexachloroethane | 390. U | 390. U | 420, U | 400. U | 370. U | 380. U | | | Nitrobenzene | 390. U | 390. U | 420. U
420. U | 400. U | 370. U | 380. U | | 10 100 100 | Isophorone | 390. U | 390. U | 420. U
420. U | 400. U | 370. U | 380. U | | 182 1, 100 1, 100 | 2-Nitrophenol | 390. U | 390. U | รางราครั้งรายรายการที่เป็นกับคือ ความสายสมัยสอบวิจาของสายสายส | 400. U | 370. U | 380. U | | | 2,4-Dimethylphenol | 390. U | 390. U
390. U | 420. U
420. U | 400. U | 370. U | 380. U | | | 2,4-Dichlorophenol | 390. U | 390. U
390. U | 420. U | 400. U | 370. Ů | 380. U | | 1 | 4-Chloroaniline | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | 1 | bis(2-Chloroethoxy)methane | 390. U
390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | 11 11 11 11 11 11 11 | Hexachlorobutadiene | 11 + 16 15040 M24 M24 M24 M44 M44 M44 M44 M44 M44 M44 | 390. U | 420. U | 400. U | 370. U | 380. U | | Service and the service of servi | 4-Chloro-3-methylphenol
| 390. U
390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2-Methylnaphthalene | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | | Hexachlorocyclopentadiene 2,4,6-Trichlorophenol | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | | | 980. U | 990. U | 1000. U | 1000. U | 920. U | 950. U | | | 2,4,5-Trichlorophenol
2-Chloronaphthalene | 900. U
390. U | 390. U | 420. U | 400. U | 370. U | 380. ∪ | | | 2-Nitroaniline | 980. U | 990. U | 1000. U | 1000. U | 920. U | 950. U | | 1 | Dimethylphthalate | 390. U | 390. U | 420. U | 400. ∪ | 370. U | 380. U | | | 2,6-Dinitrotoluene | 390. U | 70N II | 420. U | 400. U | 370. U | 380. U | | 1 | 3-Nitroaniline | 980. Ŭ | 990. | 1000. U | 1000. U | 920. U | 950. U | | | 2,4-Dinitrophenol | 980. U | 990. U | 1000. U | 1000. U | 920. U | 950. U | | | 4-Nitrophenol | 980. U | 990. U | 1000 U | 1000. U | 920. U | 950. U | | 1 | Dibenzofuran | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | | 2,4-Dinitrotoluene | 390. U | 390. U | 420. U | 400. ∪ | 370. U | 380. U | | | Diethylphthalate | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | | 4-Chlorophenylphenyl ether | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | | 4-Nitroaniline | 980. U | 990. U | 1000. ປ | 1000. U | 920. U | 950. U | | 534-52-1 | 2-Methyl-4,6-Dinitrophenol | 980. U | 990. U | 1000. U | 1000. U | 920. U | 950. U | | 1 1 | Diphenylamine | 390. U | 390. U | 420. U | 400. U | 370. U | 380. U | | 101-55-3 | 4-Bromophenyl-phenylether | 390. U | 390. U | 420. U | 400. U | 370. U | 380. ∪ | | , , | | | | · | | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 42 Time: 14:33 | | SVÖA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB0118
\$242909*5
LTSSBB0118
04/26/02
05/01/02
05/03/02
Soil | LTS-C-BB01-18
LTSCBB0118
S242909*6
LTSCBB0118
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB02-18
LTSSB80218
S242909*3
LTSSB80218
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB02-25
LTSSBB0225
S242900*4
LTSSBB0225
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
S242909*9
LTSSBB0305
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB03-14
LTSSBB0314
S242909*10
LTSSBB0314
04/26/02
05/01/02
05/03/02
S01L
UG/KG | |---|--|---|--|---|--|---|--|--| | - | CAS | # Parameter | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | 87-86-
86-74-
84-74-
85-68-
91-94-
117-81-
117-84-
100-52-
98-86-
105-60-
92-52- | Hexachlorobenzene Pentachlorophenol: Carbazole Di-n-butylphthalate Butylbenzylphthalate Ji-Dichlorobenzidine bis(2-Ethylhexyl)phthalate (BEHP) Di-n-octylphthalate Benzaldehyde Acetophenone Caprolactam Ji-Biphenyl Atrazine | 390. U 980. U 390. | 390. U 990. U 390. | 420. U 1000. U 420. | 400. U 1000. U 400. | 370. U 920. U 370. | 380. U 950. U 380. | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: Time: 14:33 | | SVCA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB04-17
LTSSBB0417
S242909*7
LTSSBB0417
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB04-25
LTSSBB0425
S242909*8
LTSSBB0425
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
s243390*4
LTSSBBBB12
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3B-14
LTSSBB3B14
S243390*5
LTSSBB3B14
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
S243390*6
LTSSBB3B16
05/14/02
05/17/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
S243390*1
LTSSBB3C12
05/14/02
05/17/02
05/24/02
Soil
UG/KG | |-----|--|--|---|---
--|---|---|--| | | CAS # | Parameter | 209315 VAL | 209315 VAL | 209722 VAL | 209722 VAL | 209722 VAL | 209722 VAL | | ٠. | 108-95-2 | Phenol | 380. U | 380. U | 380. U | 380. U | 380. ∪
380. U | 390. U
390. U | | | 111-44-4 | bis(2-Chloroethyl)ether | 380. U | 380. U | 380. U | 380. U | 380. U
380. U | 390. U | | ٠. | | 2-Chlorophenol | 380. U | 380. U | 380. U | 380. U
380. U | 380. U | 390. U | | | | 2-Methylphenol (o-Cresol) | 380. U | 380. U | 380. U | 380. U
380. U | 380. U | 390. U | | | 108-60-1 | 2,2!-oxybis(1-Chloropropane)/bis(2- | | 380. U | 380. U
380. U | 380. U | 380. U | 390. Ü | | | | 3-Methylphenol/4-Methylphenol | 380. ⊔ | 380. U | 380. U
380. U | 380. U | 380. U | 390. U | | | | N-Nitroso-di-n-propylamine | 380. U | 380. U
380. U | 380. U | 380. U | 380. U | 390. U | | | 7 1 7 | Hexachloroethane | 380. U | 380. U | 380° U | 380. U | 380. U | 390. U | | | 1 1 202 1 | Nitrobenzene | 380. U
380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | ٠., | 1 | Isophorone # | 380. U | 380. U | 380. U | 380. ∪ | 380. ∪ | 390. U | | | | 2-Nitrophenol | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | 105-67-9 | 2,4-Dimethylphenol
2,4-Dichlorophenol | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | | 4-Chloroaniline | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | | bis(2-Chloroethoxy)methane | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | 1 10 2000 000 | Hexachlorobutadiene | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | . , | | 4-Chloro-3-methylphenol | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2-Methylnaphthalene | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | ι, | | Hexachlorocyclopentadiene | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | ٠., | | 2,4,6-Trichlorophenol | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U
980. U | | `. | | 2,4,5-Trichlorophenol | 960. U | 950. U | 960. U | 960. U | 940. Ú | 390. U | | | 91-58-7 | 2-Chloronaphthalene | 380. U | 380. U | 380. U | 380. U | 380. U
940. U | 980. U | | | 88-74-4 | 2-Nitroaniline | 960. Ú | 950 U | 960' U ' | 960. U | 940. U
380. U | 390. U | | | | Dimethylphthalate | 380. U | 380. U | 380. U | 380. U
380. U | 380. U | 390. U | | | | 2,6-Dinitrotoluene | 380. U | 380. U | 380. U | 380. U
960. U | 940 U | 980. U | | | | 3-Nitroaniline | 960. U | 950. U | 960. U
960. U | 960. U | 940. Ú | 980. U | | | | 2,4-Dinitrophenol | 960. U | 950. U | al le la le la real séculione de la compansación de la facilitation de la compansación de la facilitation | 960. U | 940. Ü | 980. U | | : . | | 4-Nitrophenol | 960. U | 950. U | 960. U
380. U | 380. U | 380. U | 390. U | | | | Dibenzofuran | 380. U | 380. U
380. U | 380. U | 380. U | 380. U | 390. U | | | | 2,4-Dinitrotoluene | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | and the second s | Diethylphthalate | 380. U
380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | | 4-Chlorophenylphenyl ether | 380. U
960. U | 950. U | 960. U | 960. U | 940. U | 980. U | | - | | 4-Nitroaniline | 960. U | 950. U | 960. U | 960. U | 940. U | 980. U | | | | 2-Methyl-4,6-Dinitrophenol | 380. U | 380. ∪ | 380. U | 380. U | 380. U | 390. U | | | | Diphenylamine
4-Bromophenyl-phenylether | 380. U | 380. U | 380. U | 380. U | 380. U | 390. U | | | 101-22-3 | +-Promobited Acabited Academic (1997) | | 4 | Andrew Contraction and Antonion Contraction and Antonion Contraction and Antonion Contraction and Antonion Contraction and Antonion Contraction and Antonion Contraction Contr | | | | | | | The state of s | · | I | | | · · · · · · · · · · · · · · · · · · · | The second secon | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 44 Time: 14:33 | SVOA | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB04-17
LTSSBB0417
\$242909*7
LTSSBB0417
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB04-25
LTSSBB0425
S242909*8
LTSSBB0425
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
S243390*4
LTSSBB3B12
05/14/02
05/17/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3B-14
LTSSBB3B14
S243390*5
LTSSBB3B14
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
S243390*6
LTSSBB3B16
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
S243390*1
LTSSBB3C12
05/14/02
05/17/02
05/24/02
S01L
UG/KG | |--|--|---|--|---|---|---|---
---| | | CAS # | Parameter | 209315 VAL | 209315 VAL | 209722 VAL | 209722 VAL | 209722 VAL | 209722 VAL | | 87
86
84
85
91
117
117
100
98
105 | 7-86-5
6-74-8
4-74-2
5-68-7
1-94-1
7-81-7
7-84-0
0-52-7
8-86-2
5-60-2
2-52-4 | Hexachlorobenzene Pentachlorophenol Carbazole Di-n-butylphthalate Butylbenzylphthalate 3,3'-Dichlorobenzidine bis(2-Ethylhexyl)phthalate (BEHP) Di-n-octylphthalate Benzaldehyde Acetophenone Caprolactam 1,1-Biphenyl Atrazine | 380. U 960. U 380. | 380. U 950. U 380. | 380. U 960. U 380. | 380. U 960. U 380. | 380. U 940. U 380. | 390. U 980. U 390. | | | | | | | | | | | | | - | ; - | | | | | | | | | | | | | | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 45 Time: 14:33 | SVOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3C-14
LTSSBB3C14
S243390*2
LTSSBB3C14
05/14/02
05/17/02
05/24/02
Soil
UG/KG | | LTS-S-BB3C-16
LTSSBB3C16
S243390*3*RE
LTSSBB3C16
05/14/02
05/17/02
05/24/02
Soil
UG/KG | RE | LTS-S-BB3D-12
LTSSBB3D12
S244037*5
LTSSBB3D12
06/07/02
06/19/02
06/21/02
Soil
UG/KG | | LTS-S-BB3D
LTSSBB3D14
S244037*6
LTSSBB3D14
06/07/02
06/19/02
06/21/02
Soil
UG/KG | | LTS-S-BB3D
LTSSBB3D16
S244037*7
LTSSBB3D16
06/07/02
06/19/02
06/21/02
Soil
UG/KG | | LTS-C-BB3D
LTSCBB3D16
S244037*8
LTSCBB3D16
06/07/02
06/19/02
06/21/02
Soil
UG/KG | | |--------------|---|--|--|--|--------------------|---|---------------------|--|-----------------------|--|---|--|--------------------| | CAS.# | Parameter | 209722 | VAL | 209722 | VAL | 210146 | VAL | 210146 | VAL | 210146 | VAL | | VAL | | 108-95-2 | Phenol | 380. U | , | 380. | U | 370. | U
socjeroropecki | 380. | U* | 380.
380. | ្ឋ
ម | 400.
400. | . <u>U</u> | | 111-44-4 | ois(2-Chloroethyl)ether | | 1 | 380. | Ü | 370. | U | 380. | Ü | | U | 400. | · U | | | 2-Chlorophenol | 380. U | | 380. | U
Sercessoria | 370. | U | 380. | U | 380.
380. | | 400. | ្រ | | | 2-Methylphenol (o-Cresol) | The state of s | | 380. | U | 370. | U | 380. | V U | 380. | or oxy wax
U | 400. | U | | 108-60-1 | 2,2'-oxybis(1-Chloropropane)/bis(2- | | 1 | 380. | · U | 370. | U | 380. | U
U | 380. | U V | 400. | | | 9999900-32-2 | 3-Methylphenol/4-Methylphenol | 380. U | V . V . V . | 380. | Ų | 370. | U | 380. | U | 380. | , por esta de la composición de la composición de la composición de la composición de la composición de la comp
La composición de la composición de la composición de la composición de la composición de la composición de la | 400. | U U | | 621-64-7 | N-Nitroso-di-n-propylamine | 380. U | 15-00-00-00-0 | 380. | U | 370. | U | 380.
380. | Ü | 380. | | 400 | Ü | | 67-72-1 | Hexachloroethane |
380. U | | 380. | U | 370. | U | A SECURE AND A SECURE AND A SECURE AS SE | | 380. | U | 400. | ·U | | 98-95-3 | Nitrobenzene | 380. U | and a second | 380. | Ų | 370. | U | 380. | U | 380. | Ü | 400. | ŭ | | 78-59-1 | Isophorone | 380. U | | 380. | U | 370. | U | 380. | U | 380. | u
U | 400. | U | | 88-75-5 | 2-Nitrophenol | 380. U | an anagers of | 380. | U | 370. | U | 380. | U | 380. | ្រប់ | 400. | Ŭ | | | 2,4-Dimethylphenol | 380. U | | 380. | U | 370. | U | 380. | | 380. | maria, NULA Segri
U | 400. | U U | | 120-83-2 | 2,4-Dichlorophenol | 380. U | 10000000000000 | 380. | U | 370. | U | 380. | U. | 380. | Ü | 400. | ¢⊹்ப் ⊹ | | 106-47-8 | 4-Chloroaniline | 380. U | | 380. | U | 370. | U | 380. | | 380. | U | 400 | u
U | | | ois(2-Chloroethoxy)methane | 380. U | 200 1 12 4 | 380. | U
 | 370. | U | 380. | U
Januar salah 198 | 380. | ~ Ü % | 400. | ્રાં / | | 87-68-3 | Hexach Lorobutadiene | 380. U | | 380. | Ü | 370. | U | 380. | U | 380. | U | 400. | U | | 59-50-7 | 4-Chloro-3-methylphenol | 380. U | Secretary and Company of the | 380. | U | 370. | U | 380. | U | 380. | U | 400. | Ü | | 91-57-6 | 2-Methylnaphthalene | 380. U | | 380. | U | 370. | U | 380. | U | 380. | U | 400. | HANGE STATE | | | Hexachlorocyclopentadiene | 380. U | an arrange | 380. | U | 370. | U | 380. | U | 380. | Ü | 400. | ં હ | | | 2,4,6-Trichlorophenol | 380. U | and the same | 380. | U | 370. | U | 380. | U | 950. | oga, ya y agamaya
U | 1000. | ry, rug (Vir.
H | | | 2,4,5-Trichlorophenol | / 9 60. U | 0.00 0.000 | 940. | U | 930. | U | 950.
380. | Ü | 380. | a i u | 400. | ta d u | | | 2-Chloronaphthalene | 380. ∪ | | 380. | U | 370. | U | Contract to the contract of th | | 950. | rest apple. The second | 1000. | U | | | 2-Nitroaniline | 960. U | | 940. | U | 930. | U | 950.
380. | ્ ૄ | 380. | | 400. | ់ ប៉ | | | Dimethylphthalate | 380. U | - 1 | 380. | U | 370. | U | 380. | U | 380. | U. | 400. | Ü | | | 2,6-Dinitrotoluene | 380. U | وأحداثهم ومد | 380. | U | 370. | U | CONTRACTOR OF STREET | Ü | 950. | i de U | 1000. | Min U | | | 3-Nitroaniline | 960. U | A 10 100 100 100 100 100 100 100 100 100 | 940. | U | 930. | U | 950.
950. | U | 950. | U U | 1000. | U. | | | 2,4-Dinitrophenol | 960. U | 52.1 Co. | 940. | U | 930. | U
On O | 950.
950. | ្តប៉ | 950.
950. | Ü | 1000. | Ü | | | -Nitrophenol | 960. U | 0.00000.700 | 940. | U | 930. | Ü | 950.
380. | ુ∧ેજ્ત ું
U | 83. | J | 55. | | | | Dibenzofuran - | 380. U | 38.1.3038 | หมายกระทางสอบองที่มีสติดตั้งที่จะจะจะสารจะ | U | 370. | U | 380.
380. | U U | 380. | ្រប់ | 400. | ្រស្វ | | | 2,4-Dinitrotoluene | 380. U | | 380. | U | 370. | U | 380. | U | 380. | U | 400. | U | | | Diethylphthalate | 380. U | 21. 2 miles | 380. | U | 370. | U | 380.
380. | Ü | 380.
380. | . U | 400. | Ů. | | | -Chlorophenylphenyl ether | The control of the second t | | 380. | Ü | 370.
930. | ט
ט | 950 . | U | 950. | U | 1000. | U | | | 4-Nitroaniline | 960. U | | 940. | U | 930.
930. | Ü | 950 .
950 . | | 950.
950. | . i u | 1000. | U | | | 2-Methyl-4,6-Dinitrophenol | DAMA MARY MANAGAMAN, CAR ALLEGA PE | | 940. | Ü | 930.
370. | U | 380. | U | 380. | U | 400. | Ü | | | Diphenylamine | 380. U | | 380. | U | 370.
370. | U | 380. | Ü | 380. | ំ ប៉ | 400. | U. | | 101 55 7 1 | -Bromophenyl-phenylether | 380. U | | 380. | 98 1 16-100 | 1888 - A. C. 1888 - M. H. 2001 - A. S. S. | and University of | - JOU. | | | 24 25 C | 1 -50. | - | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 46 Time: 14:33 | SVOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-S-BB3C-14
LTSSBB3C14
S243390*2
LTSSBB3C14
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3C-16 RE
LTSSBB3C16
S243390*3*RE
LTSSBB3C16
05/14/02
05/17/02
05/24/02
Soil
UG/KG | LTS-S-BB3D-12
LTSSBB3D12
S244037*5
LTSSBB3D12
06/07/02
06/19/02
06/21/02
Soil
UG/KG | LTS-S-BB3D-14
LTSSBB3D14
S244037*6
LTSSBB3D14
06/07/02
06/19/02
06/21/02
Soil
UG/KG | LTS-S-BB3D-16
LTSSBB3D16
S244037*7
LTSSBB3D16
06/07/02
06/19/02
06/21/02
Soil
UG/KG | LTS-C-BB3D-16
LTSCBB3D16
S244037*8
LTSCBB3D16
06/07/02
06/19/02
06/21/02
Soil
UG/KG | |-----------|--|---|---|---|---|---|---| | <u> </u> | Parameter Hexachlorobenzene | 209722 VAL
380. U | 209722 VAL
380, U | 210146 VAL | 210146 VAL
380. U | 210146 VAL 380. U | 210146 VAL
400. U | | | Pentach Lorophenol | 960. U | 940. U | 930. U | 950. U | 950. U | 1000. | | | Carbazole | 380. U | 380. U | 370. U | 380. U | 130. J | 87. J | | 84-74-2 | Di-n-butylphthalate | 380. U | 380. U | 370. U | 380. U | 380. U | 400. U | | | Butylbenzylphthalate | 380. U | · 380. U | 370. U | 380. U | 380. U | 400. U | | | 3,31-Dichlorobenzidine | 380. U | 38 0. ∪ | 370. U | 380. U | 38 0. U | 400. U | | | bis(2-Ethylhexyl)phthalate (BEHP) | 380. U | 380. U | 370. U | 60. J | 380. U | 400. U | | | Di-n-octylphthalate
Benzaldehyde | 380. U
380. U | 380. U
380. U | 370. U
370. U | 380. U
380. U | 380. U
380. U | 400. U
400. U | | | Acetophenone | 380. U | 380. U | 370. U | 380. U | 380. U | 400. U | | | Caprolactam | 380. U | 380. U | 370. U | 380. U | 380. U | 400. U | | | 1,1-Biphenyl | 380. U | 380. U | 370. U | 380. U | 380. U | 400. U | | 1912-24-9 | Atrazine | 380. U | 380. U | 370. U | 380. U | 380. U | 400. U | | | | | ×. | ſ | | | · | | | | | | | | • | | | | • | a . | | | | | | | | | | | | , | ٠.,٠ | | | | | | | | | , | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | • | | | | , , | | | | | | | | • | | | | | | • | | | ` | • | | | | | , ' | | | . 1 | - | | | | | | | , . [. | <u>.</u> . | · . | | | | . [| | | | | • | | | • • • | | | | | | | | | • , [| | | | | | | • | | | | | | | | | , | : | , . | , | • | | | | | | <u>_</u> | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 47 Time: 14:33 | To From REPORT> LTSSBB3D18 | S244969A*6
LTSSBB3F14
O7/11/O2
O7/15/O2
O7/19/O2
Soil
UG/KG | \$244969A*7
LTSSBB3F16
07/11/02
07/15/02
07/19/02
Soil
UG/KG | |---|---|--| | CAS # Parameter LIBO7 VAL 210127 VAL 210127 VAL 210127 VAL L | LIB07 VAL | LIBO7 VAL | | 108-95-2 Phenol 380. U 380. U 390. U 380. U 380. U 380. U 380. U | 380. U
380. U | 380. ປ | | 111-44-4 [bis(2-untoroethyt)ether | 380. U | 380. U | | 95-57-8 2-cntoropnenot | 380. U | 380. U | | 95-48-7 (2-Methylphenol (0-tresol) | 380. U | 380. U | | 108-60-1 2,2'-oxybis(1-Chtoropropane)/bis(2-chtor 360, 0 360, 0 370, | 380. U | 380. ∪√ | | 700 U 700 U 700 U | 380. U | 380. U | | 621-64-7 N-NTCroso-di-n-propytalithe | 380. U | 380. U | | 700 II | 380. U | 380. U | | 98-95-5 NT Cropenzene | 380. U | 380. U | | 78-59-1 Isopholone | 380. U | 380. U | | 88-75-5 2-Nitrophenol 380. U 380. U 390. U 380. U 380. U 380. U | 380. U | 380. U | | 120-83-2 2.4-Dichlorophenol 380. U 380. U 390. U 380. U | 380. U | 380. U | | 106-67-8 4-Chloroaniline 380. U 380. U 390. U 380. U | ′ 380. U | 380. บ | | 111-01-1 his(2-chloroethoxy) methane 380. U 380. U 390. U 380. U | 380. U | 380. U | | 87-68-3 Hexach Corobutaciene 380. U 380. U 390. U 380. U | 380. U | 380. Ú | | 59-50-7 4-Chloro-3-methylphenol 380. U 380. U 390. U 380. U | 380. U | 380. U | | 91-57-6 2-Methylnaphthalene 380. U 380. U 390. U 380. U | 380. U | 380. U | | 77-47-4 Hexachlorocyclopentadiene 380. U 380. U 390. U 380. U | 380. U | 380. U | | 88-06-2 2.4.6-Trichtorophenol 380. U 380. U 390. U 380. U | 380. U | 380. U
960. U | | 95-95-4 2,4,5-Trichlorophenol 950. U 940. U 980. U 940. U | 950. U | 960. U
380. U | | 91-58-7 2-Chloronaphthalene 380. U 380. U 390. U 380. U | 380. U
950. U | 960. U | | 88-74-4 2-Nitroaniline 950. U 940. U 980. U 940. U | 950. ປ
380. ປ | 380. U | | 131-11-3 Dimethylphthalate 380. U 380. U 390. U 380. U (140, 20, 31, 31, 4-Dimitratelylphe 380. U 380. U 380. U 380. U 380. U | 380. U | 380. U | | 600-20-2 [2,8-9) in the total energy (0.00 to 1) | 950. U | 960. U | | 99-09-2 J-Mitt Odin title | 950. U | 960. U | | 51-28-5 2,4-91h1 trophenot | 950. U | 960. U | | 100-02:7 4-N1 ti opiienot | 380. U | 380. U | | 132-64-9 priperzoruran 500. 0 1 500. | 380. U | , 380. U | | 300. U 700 | 380. U | 380. U | | 84-66-2 pretnytphthatate | 380. U | 380. U | | 7005-72-3 4-Chlorophenylphenyl ether 380. U 380. U 380. U 380. U 380. U 380. U 940. U 940. U 940. U 940. U | 950. U | 960. U | | 100-01-8 4-Nitroanitine 930. 0 940. U 980. U 940. U 980. U 940. U | 950. U | 960. U | | 122-39-4 Diphenylamine 380. U 380. U 380. U | 380. U | 380. U | | 101-55-3 4-Bromophenyl-phenylether 380. U 380. U 390. U 380. U | 380. U |
380. ∪ | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 48 Time: 14:33 | 118-74-1 Hexachtorobenzene | OA | | SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED DATE ANALYZED MATRIX UNITS | > LTSSBB3D18
> S244969A*9
> LTSSBB3D18
> 07/11/02
> 07/23/02
> 07/24/02
> Soil | LTS-S-BB3E-12
LTSSBB3E12
S243973*3
LTSSBB3E12
06/07/02
06/12/02
06/14/02
Soil
UG/KG | LTS-S-BB3E-14
LTSSBB3E14
S243973*4
LTSSBB3E14
06/07/02
06/12/02
06/14/02
Soil
UG/KG | LTS-S-BB3E-16
LTSSBB3E16
S243973*5
LTSSBB3E16
06/07/02
06/12/02
06/14/02
Soil
UG/KG | LTS-S-BB3F-14
LTSSBB3F14
S244969A*6
LTSSBB3F14
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB3F-16
LTSSBB3F16
S244969A*7
LTSSBB3F16
07/11/02
07/15/02
07/19/02
Soil
UG/KG | |-------------------------------------|--|---|--|--|---|---|---|---|--| | 118-74-1 Hexachtoropenzene 360. | . CA | AS # Parameter | | LIBO7 VAL | 210127 VAL | 210127 VAL | 210127 VAL | LIBO7 VAL | L1B07 VAL | | | 87-86
86-76
84-76
85-66
91-96
117-8
117-86
100-56
98-86
92-56 | 86-5 Pentachloropher 74-8 Carbazole 74-2 Di-n-butylphtha 68-7 Butylbenzylphth 94-1 3,3'-Dichlorobe 81-7 bis(2-Ethylhex) 84-0 Di-n-octylphtha 52-7 Benzaldehyde 86-2 Acetophenone 60-2 Caprolactam 52-4 1,1-Biphenyl | nol
late
lalate
inzidine
(l)phthalate (BEHP)
late | 950. U
32. J
380. U
380. U
380. U
380. U
380. U
380. U
380. U
380. U | 940. U
380. U | 980. U 390. | 940. U 56. J 380. U | 380. U 950. U 380. | 380. U 960. U 35. J 380. U | | | ٠. | | | | | | | | | | | , | | | | | | | | | | | | 1 2 m | | | | | | | | | | | | | | | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: Time: 14:33 | SVOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3F-1
LTSSBB3F18
S244969A*8
LTSSB3F18
07/11/02
07/15/02
07/19/02
Soil
UG/KG | 18 | LTS-S-BB3G-10
LTSSBB3G10
S244969*13
LTSSBB3G10
07/11/02
07/15/02
07/20/02
Soil
UG/KG | | LTS-S-BB3G-1.
LTSSBB3G12
S244969*14
LTSSBB3G12
07/11/02
07/15/02
07/20/02
Soil
UG/KG | 2 | LTS-S-BB3G
LTSSBB3G14
S244969*15
LTSSBB3G14
07/11/02
07/15/02
07/20/02
Soil
UG/KG | | LTS-C-BB3G
LTSCBB3G14
S244969*16
LTSCBB3G14
07/11/02
07/15/02
07/21/02
Soil
UG/KG |) | LTS-S-BB3G-16
LTSSBB3G16
S244969A*1
LTSSBB3G16
07/11/02
07/15/02
07/19/02
Soil
UG/KG | |----------|---|--|------------------------|--|---|--|---|---|---|---|---|--| | CAS # | Parameter | LIB07 | VAL | LIBO8 | VAL | LIB08 | VAL | L1808 | VAL | LIB08 | VAL | LIBO7 VA | | 108-95-2 | Phenol | 380. | U | 400. | U | 390. | U | 390. | U
Talah sasabasi A | 3700. | U. | 380. U
380. U | | 111-44-4 | bis(2-Chloroethyl)ether | 380. | Ü | 400. | U | 390. | U | 390. | Ü | 3700. | Ü | 380. U
380. U | | 95-57-8 | 2-Chlorophenol | 380. | U
 | 400. | U | 390. | U | 390. | - U
8883-888002 : 195-8803 | 3700. | U
And Advanced | 380. U | | | 2-Methylphenol (o-Cresol) | 380. | Ü | 400. | U | 390. | U | 390. | Ü | 3700. | U | 380. U | | 108-60-1 | 2,2'-oxybis(1-Chloropropane)/bis(2 | | U
Sistemata | 400. | U
:::::::::::::::::::::::::::::::::::: | 390. | U | 390. | U | 3700.
630. | | 380. U | | | 3-Methylphenol/4-Methylphenol | 380. | U | 400. | U | 390. | U | 390. | U | 3700. | reaser¥ectorise
U | 380. U | | | N-Nitroso-di-n-propylamine | 380. | U. | 400. | U | 390. | U | 390. | U | 3700.
3700. | j | 380. Ü | | | Hexachloroethane | 380. | Ü | 400. | U | 390. | U | 390.
390. | U U | 3700. | Ü | 380. U | | | Nitrobenzene | 380. | U
 | 400. | U | 390. | U
************************************ | ANDRIANANAN DERGAMBERGELE | Ü | 3700.
3700. | ្រំ | 380. Ü | | 1 19 0 | Isophorone | 380. | U ` | 400. | U | 390. | U | 390.
390. | U | 3700. | U | 380. U | | | 2-Nitrophenol | 380. | U
.86.54295348.000 | 400. | U | 390. | U | 390. | Ü | 3700.
3700. | . ŭ . | 380. U | | | 2,4-Dimethylphenol | 380. | U | 400. | U | 390. | U
U | 390. | U | 3700. | U | 380. U | | | 2,4-Dichlorophenol | 380. | U
Alaba Mada | 400. | U | 390. | 55555555555555555 | 390.
390. | Ü | 3700.
3700. | | 380. U | | | 4-Chloroaniline | 380. | erion jara | 400. |
U | 390. | U | 390. | U | 3700. | U | 380. U | | 1 | bis(2-Chloroethoxy)methane | 380. | U | 400. | U
Companya | 390. | U | 390.
390. | o i i i i i i i i i i i i i i i i i i i | 3700.
3700. | Ü | 380. U | | | Hexachlorobutadiene | 380. | Ü | 400. | U | 390. | ្ U. | 390. | U | 3700. | Ü | 380. U | | | 4-Chloro-3-methylphenol | 380. | U
Arriadas a refera | 400. | U | 390. | U | 390.
390. | UJ | 5100. | | 380. U | | | 2-Methylnaphthalene | 380. | | 400. | Ü | 390.
390. | U | 390.
390. | . U | 3700. | . Se teres de la composition de la composition de la composition de la composition de la composition de la comp
La composition de la composition de la composition de la composition de la composition de la composition de la | 380. U | | | Hexachlorocyclopentadiene | 380. | U | 400. | U
U | 390.
390. | เบ้า | 390.
390. | ı j | 3700. | Ü | 380. U | | | 2,4,6-Trichlorophenol | 380. | 1.50 | 400. | ુ⊍
U | 980. | ‱USE 1990
U | 990. | U | 9200. | U U | 960. U | | | 2,4,5-Trichlorophenol | 960. | U | 1000.
400. | | 980.
390. | ្ស័ 👑 | 390. | Partie of | 3700. | ů | 380. U | | 1 | 2-Chloronaphthalene | 380. | U | | U | 980. | Teru Pada
U | 990. | U | 9200. | U | 960. U | | | 2-Nitroaniline | '960. | U | 1000. | U | Let V. D. P. 10000000000000000000000000000000000 | U | 390. | | 3700. | Ü | 380. U | | | Dimethylphthalate | 380.
 U | 400. | U | 390.
390. | υ. | 390.
390. | U | 3700. | U | 380. U | | | 2,6-Dinitrotoluene | 380. | ່ ປ | 400. | U | 980. | U. | 990. | Ü | 9200. | U | 960. U | | 1 | 3-Nitroaniline | 960. | U | 1000. | U | 980. | U | 990. | U | 9200. | U U | 960. U | | • | 2,4-Dinitrophenol | 960. | U. | 1000. | U | 980.
980. | Ü | 990. | | 9200. | Ů | 960. U | | | 4-Nitrophenol | 960. | U | 1000. | U | 390. | U | 390. | UJ | 10000. | и роди город М ори (40% 10)
Ј | 380. U | | 7 | Dibenzofuran | 380. | U | 400. | U
U | 390.
390. | U | 390. | ૼ૽ૺ૾ૺ૽ | 3700. | e i i | 380. U | | | 2,4-Dinitrotoluene | 380. | U | 400.
400. | U | 390. | U | 390. | U | 3700. | U | 380. U | | | Diethylphthalate | 380. | U | 400. | U | 390. | Ü | 390. | Ü | 3700. | Ŭ | 380. U | | | 4-Chlorophenylphenyl ether | 380. | Ų | 400.
1000. | U | 980. | U | 990. | U · | 9200. | U | 960. U | | | 4-Nitroaniline | 960. | U | AN EXPENSIONAL PROPERTY OF THE | ASSESSED AND A SECOND | 980. | Ü | 990. | Ü | 9200. | Ŭ | 960. U | | | 2-Methyl-4,6-Dinitrophenol | 960. | U | 1000.
400. | ป
U | 390. | U | 390. | U | 3700. | U | 380. U | | - 1 / m | Diphenylamine | 380. | U | 400. | U | 390. | Ü | 390. | ับั | 3700. | Ŭ | 380. U | | 101-55-3 | 4-Bromophenyl-phenylether | 380. | U | 400. | U | <u>.</u> | os Yakibibi | 770 | epopped type of misco | | | 2000년 200 등록문문 (1994년 1년 1 | | | | Į. | | | | | | L | | | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 50 Time: 14:33 | - 1000 | | on de la company | Salaran | and the sec | an an Alban | over to | vivorosidado | 8085050 | 0000000 | 0000000 | 0000000 | electrical co | 00 (00.00) | 000000 | 00000000 | 3434564 | ere edito | | er sees | S(200) | eggstor | - gassig | 98933 | gagaraga . | 4 - 00 | |-----|--|--|-----------------------------------|---|--|---|----------------------------------|--|--|--|-------------------------------|---------------------------------------|------------------------|----------------------------|----------------------------------|--------------------------|--|----------|----|---------------|----|------------------|--------------|---|--|--------|----------------------------|-----|--------|--|--|--------------------------|-------------|---------------------------------|---------|--|---|--|---------|---------------------------------------|---------------|--------------------------------------|-----------------------------------|---|----------------------------|-----------|-------------|---------|--|--|--|-------|-----------------------|--------------| | SVO |)A | <u> </u> | | | | | | Of
L/
II
S/
D/
D/
M/ | MPL
RIGI
AB S
O FR
MPL
ATE
ATE
ATRI | NAI
AMF
IOH
.E .C
EX1
AN/ | LE
REI
RAI
RAI
LY | D -
ID
POR
E -
CTE
ZED |
T -

D -
 | ->
->
->
->
-> | L1
S2
L1
07
07
07 | SSE
449
SSE
/11 | 1831
1694
1831
102
102
102 | *8
18 | 18 | | | 1
1
0
0 | LTS:
S244 | SBB
496
SBB
11/
15/
20/
l | 02 | 0
3 | 0 | | | LTS-
LTSS
SZ44
LTSS
07/1
07/2
Soil | BB36
969
BB36
1/07
5/07 | \$12
*14
\$12
2 | | | | LTS
LTS
S24
LTS
07/
07/
S0i
UG/ | SBB
496
SBB
11/
15/
20/
l | 3G1
9*1
3G1
02
02 | 4
5 | | | L
 S
 L
 O
 O
 S | TSC
244
TSC
17/1
17/1 | | G14
*16
G14
2 | | | | LT
S2
LT
07
07
07
S0 | SSBB
4496
SSBB
/11/
/15/
/19/ | 3G16
9A*
3G16
02
02 | 1 | | | | - | <u> </u> | CAS | # | Param | etei | | | | | | | | | | LI | во7 | | | | ٧ | AL | l | IB | 08 | | | , | /AL | | LIBC | 8 | | | VAI | | LIB | 80 | | | ١ | /AL | L | 180 | 8 | | | V | ۱L | LI | в07 | | | V | AL | | | 118
87
86
84
85
91
117 | -74-
-86-
-74-
-74-
-68-
-94-
-81- | 1 F
5 F
2 C
7 F
1 2 C | Hexac
Penta
Carba
Di-n-
Butyl
5,31-
Dis(2
Di-n-
Benza | hloi
chlo
zole
but;
ben;
ben;
cct; | robe
prop
e
/lph
ylph
ilon
ilon
ylph | tha
hth
obt
obe
nexy | ilat
ala
nzi | e
ite
idir | ie: | | (B) | EHP | | | | 380
380
380
380
380
380
380
380 | | | U U U U U U U | | | | 10
4
4
4
4
4 | 00.
00.
00.
00.
00.
00. | | U
U
U
U
U
U | | | | 390
980
390
390
390
390
390
390 | o.
o.
o.
o. | | ט
ט
ט
ט
ט
ט
ט | | | 9
3
3
3
3
3
3 | 90.
90.
90.
90.
90.
90. | | U U U U U U U U U U | J | | 1 | 370
920
500
370
370
370
370
370
370 | 0.
0.
0.
0.
0. | | 7 0 0 0 0 | | | 3
3
3
3
3 | 880.
880.
880.
880.
880.
880. | | U U U U U U | | | | 98
105
92 | -86-
-60-
-52- | 2 7 2 0 4 1 | ceto
Capro
I,1-B
Atraz | pher
lact
iphe | one
am
nyl | j | ika s | | | · .* | | | | | | 380
380
380
380 | | | U | | T | | 4 | 00.
00.
00. | | U
U
U
U | | | | 390
390
390
390 |).
). | 100000 | บ
บ
บ
บ | | | 3
3 | 90.
90.
90.
90. | | U
U
U
U | | | | 370
370
370
370 | o.
o. | | U
U
U | | | 3 | 80.
80.
80.
80. | | U
U
U | (4) · 蒙
(| | | | | | | , | | | • | • • | | | | | | | | | | | | | | | | • | | | | | | | | | : | | | | | | | , | | | | | | | • | | | | | | | | | | | | | | | | | | | - | | | | | | | | | ٠ | | | • | | | | | | | | | | ٠. | • . | | | | 2 | | | | | | | | | | | | | ¥. | • | | | | | | | | | | | | | | | | | | • | | | , | | | | | | *
- (*) | | | • | • | | | | • | | | | | | | | | | | • | .* | | | | | ų, | * | | | | | | *, | | | | | | | | | | | | | - . | | s, | | | | · · · · · · · · · · · · · · · · · · · | • | | | | | | | *: | | | | | | | | | , | ٠. | | | | | | | , | | , | | | | ٠٠, | | | | | | - | | | | , ; | | | ** | • | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 51 Time: 14:33 | SVÖA | SAMPLE ID> ORIGINAL ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3G-18
LTSSBB3G18
S244969A*2
LTSSBB3G18
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB3H-14
LTSSBB3H14
S244969A*3
LTSSBB3H14
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB3H-16
LTSSBB3H16
S244969A*4
LTSSBB3H16
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB3H-18
LTSSBB3H18
S244969A*5
LTSSBB3H18
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB31-14
LTSSBB3114
S244969*10
LTSSBB3114
07/11/02
07/15/02
07/20/02
S011
UG/KG | LTS-S-BB31-16
LTSSBB3116
S244969*11
LTSSBB3116
07/11/02
07/15/02
07/21/02
S01L
UG/KG |
--|--|--|--|--|--|--|--| | CAS:# | Parameter | LIBO7 VAL | LIBO7 VAL | LIBO7 VAL | LIBO7 VAL | LIBOS VAL | LIBOS VAL | | 108-95-2 | \mathbf{I}_{12} , $x_1, x_2, x_3, x_4, x_5, x_5, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$ | 380. U | 380. U | 390. U
390. ⊍ | 380. ∪
380. ∪ | 380. ป
380. ป | 390. U
390. U | | 5 000 7 | bis(2-Chloroethyl)ether | 380. U | 380. U | 390. U
390. U | 380. U | 380. U | 390. U | | | 2-Chlorophenol | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 95-48-7 | 2-Methylphenol (o-Cresol) | 380. U | 380. U
380. U | 390. U | 380. U | 380. U | 390. U | | | 2,2'-oxybis(1-Chloropropane)/bis(2 | -chlor 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 3-Methylphenol/4-Methylphenol | 380. U
380. U | 380. U | 390. U | 380. U | 380. ✓ · U | 390. U | | 1 1 1 1 1 1 1 1 1 | N-Nitroso-di-n-propylamine | น และ เคราะสาย (ค.ศ. 25/25/25/25) เกษายนการเหลือ (ค.ศ. 25/25) | 380. U | 390. U | 380. U | 380. U | 390. U | | | Hexachloroethane | 380. U
380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | Carried States | Nitrobenzene | งที่ พ.ม.การมหั้งพระเทยนักพิทธิ์รถิตรรวจนามของอนดีวิธี วินศิลิธี วิจศิล | 380. U | 390. U | 380. U | 380. U | 390. U | | | Isophorone | 380. U
380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 4 4 5 5 5 5 5 5 | 2-Nitrophenol | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 2,4-Dimethylphenol | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 2,4-Dichlorophenol 4-Chloroaniline | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 4 | bis(2-Chloroethoxy)methane | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Hexachlorobutadiene | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | - ' | 4-Chloro-3-methylphenol | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 1 | 2-Methylnaphthalene | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | Hexachlorocyclopentadiene | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2,4,6-Trichlorophenol | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 2,4,5-Trichlorophenol | 940. U | 960. U | 980. U | 940. U | 940. U | 980. U | | | 2-Chloronaphthalene | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 2-Nitroaniline | 940. U | 960. U | 980. U | 940. U | 940. U | 980. U | | 1 100 800 | Dimethylphthalate | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 2,6-Dinitrotoluene | 380. U | 380. U | 390. U | 380. U | 380. U | 390. U | | | 3-Nitroaniline | 940. U | 960. U | 980. U | ال 940. | 940. U | 980. U | | | 2,4-Dinitrophenol | 940. U | 960. U | 980. U | 940. U | 940. U | 980. U
980. U | | | 4-Nitrophenol | 940. U | 960. U | 980. U | 940. U | 940. U | | | 132-64-9 | Dibenzofuran | 380. U | 380. U | 390. U | 380. U | 380. U | . 390. U
390. U | | 121-14-2 | 2,4-Dinitrotoluene | 380. U | 380. U | 390. U | 380. U | 380. U | | | | Diethylphthalate | 380. U | 380. U | 390. U | 380. U | 380. U
380. U | l 390. ປ
390. ປ | | 7005-72-3 | 4-Chlorophenylphenyl ether | 38 0. U | 380. U | 390. U | 380, U | T T T T T T T T T T T T T T T T T T T | 980. U | | | 4-Nitroaniline | 940. U | 960. U | 980. U | 940. U
940. U | 940. U
940. U | 980. U | | 534-52-1 | 2-Methyl-4,6-Dinitrophenol | 940. U | 960. U | 980. U | possession of respectations for a section of the | 940. ∪
 380. ∪ | 390. U | | and the second of o | Diphenylamine | 380. U | 380. U | 390. U | 380. U | 380. U | 390. ∪
390. ∪ | | 101-55-3 | 4-Bromophenyl-phenylether | 380. U | 380. ∪ | 390. U | 380. U |)
 | posto, pro 4.84.65. Posto 4.5. Posto
P | | | | | <u> </u> | <u> </u> | L | L | L | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 52 Time: 14:33 | CAS # Parameter TESOT VAL LESOT VAL LESOT VAL LESOT VAL LESOS VA | ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> | LTS-S-BB3G-18 LTS-S-BB3
LTSSBB3G18 LTSSBB3H1
S244969A*2 S244969A*
LTSSBB3G18 LTSSBB3H1
07/11/02 07/11/02
07/15/02 07/15/02
07/19/02 07/19/02
Soil Soil
UG/KG UG/KG | 4 LTSSBB3H16
5 S244969A*4 | LTS-S-BB3H-18
LTSSBB3H18
S244969A*5
LTSSBB3H18
07/11/02
07/15/02
07/19/02
Soil
UG/KG | LTS-S-BB31-14
LTSSBB3114
S244969*10
LTSSBB3114
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LIS-S-BB31-16
LISSBB3116
S244969*11
LISSBB3116
07/11/02
07/15/02
07/21/02
Soil
UG/KG | |--|--|--
--|--|--|--| | 87-86-5 Pentachlorophenol 940. U 960. U 980. U 940. U 940. U 980. U 86-74-8 Carbazole 380. U 390. U 350. U 380. U 390. U 390. U 380. U 380. U 390. U 390. U 380. U 380. | CAS # Parameter | LIBO7 VAL LIBO7 | VAL LIBO7 VAL | LIBO7 VAL | LIBO8 VAL | LIBO8 VAL | | | 87-86-5 Pentachlorophenol 86-74-8 Carbazole 84-74-2 Di-n-butylphthalate 85-68-7 Butylbenzylphthalate 91-94-1 3,3'-Dichlorobenzidine 117-81-7 bis(2-Ethylhexyl)phthalate (BEHP) 117-84-0 Di-n-octylphthalate 100-52-7 Benzaldehyde 98-86-2 Acetophenone 105-60-2 Caprolactam 92-52-4 1,1-Biphenyl | 940. U 960. 380. U 380. | U 980. U U 62. J U 390. U | 940. U 380. U 35. J 380. U | 940. U 380. | 980. U 390. | e garaga kan kan kan kan kan kan kan kan kan ka | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 53 Time: 14:33 | S | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3I-18
LTSSBB3I18
S244969*12
LTSSBB3I18
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3J-10
LTSSBB3J10
S244969*6
LTSSBB3J10
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-C-BB3J-10
LTSCBB3J10
S244969*7
LTSCBB3J10
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3J-12
LTSSBB3J12
S244969*8
LTSSBB3J12
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3J-14
LTSSBB3J14
S244969*9
LTSSBB3J14
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3K-10
LTSSBB3K10
S244969*3
LTSSBB3K10
07/11/02
07/15/02
07/19/02
Soil
UG/KG | |-----|--|---|--|---|---|---|--|---| | - | CAS # | Parameter | LIBO8 VAL | LIBOS VAL | LIBO8 VAL | LIBO8 VAL | LIBOS VAL | LIBOS VAL | | | 108-95-2 | Phenol | 380. U | 390. U | 400. U | 390. U | 380. U
380. U | 410. U
410. U | | | | bis(2-Chloroethyl)ether | 380. U | 3 90. U | 400. U | 390. ∪
390. ∪ | 380. U | 410. U | | 1 | 95-57-8 | 2-Chlorophenol | 380. U | 390. U | 400. U
400. U | 390. U | 380. U | 410. U | | | 95-48-7 | 2-Methylphenol (o-Cresol) | 380. U | 390. U
390. U | 400. U
400. U | 390. U | 380. U | 410. U | | | | 2,2'-oxybis(1-Chloropropane)/bis(2- | chlor 380. U
380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | 99 | | 3-Methylphenol/4-Methylphenol | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | | N-Nitroso-di-n-propylamine
Hexachloroethane | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Nitrobenzene (| 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Isophorone | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | 2.4 | 2-Nitrophenol | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | | 2,4-Dimethylphenol | 380. U | 390. U | 400. U | 390. ∪ | 380. U | 410. U | | | | 2,4-Dichlorophenol | 380. U | . 390. U | 400. U | 390. U | 380. U | 410. U | | | | 4-Chloroaniline | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U
410. U | | | 111-91-1 | bis(2-Chloroethoxy)methane | 380. U | 390. U | 400. U | 390. U | 380. U
380. U | 410. U | | | | Hexach Lorobutadiene | 380. U | 390. ∪ | 400. U | 390. U
390. U | 380. U | 410. U | | 1. | | 4-Chloro-3-methylphenol | 380. U | 390. U | 400. U | 390. U
390. U | 380. U | 410. Ú | | | | 2-Methylnaphthalene | 380. U | 390. U | 400. U
- 400. U | 390. U | 380. U | 410. U | | | | Hexachlorocyclopentadiene | 380. U | 390. U
390. U | 400. U | 390. U | 380. U | 410. U | | | | 2,4,6-Trichlorophenol | 380. U
940. U | | 1000. U | 980. U | 950. U | 1000. U | | | | 2,4,5-Trichlorophenol | 380. U | 980. U
390. U | 400. U | 390. U | 380. U | 410. U | | | | 2-Chloronaphthalene
2-Nitroaniline | 940. U | 980. U | 1000. U | 980. U | 950. U | 1000. U | | | | Dimethylphthalate | 380. | 390. U | 400. U | 390. ∪ | 380. U | 410. U | | | | 2,6-Dinitrotoluene | 380. U | 390. U | 400. U | . 390. U | 380. U | 410. U | | | | 3-Nitroaniline | 940. U | 980. U | 1000. U | 980. U | 950. U | 1000. U | | | | 2,4-Dinitrophenol | 940. U | 980. U | 1000. U | 980. U | 950. U | 1000. U | | | | 4-Nitrophenol | 940. U | 980. U | 1000. U | 980. U | 950. U | 1000. U | | 1 | | Dibenzofuran | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | - | 121-14-2 | 2,4-Dinitrotoluene | 380. U | 390. U | 400. U | 390. ∪ | 380. U
380. U | 410. U
410. U | | | 1. 1.03. | Diethylphthalate | 380. U | 390. U | 400. U | 390. U | 380. U
380. U | 410. U | | | • 1 | 4-Chlorophenylphenyl ether | 380. U | 390. U | 400. U | 390. U
980. U | 950. U | 1000. U | | | | 4-Nitroaniline | 940. U | 980. U | 1000. U
1000. U | 980. U | 950. U | 1000. U | | , - | | 2-Methyl-4,6-Dinitrophenol |
940. U
380. U | 980. U
390. U | 400. U | 390. U | 380. U | 410. U | | | 4 (5) 5 (4) | Diphenylamine | 380. U | 390. U | 400. U | 390. U | 380. U | 410. U | | | 101-55-5 | 4-Bromophenyl-phenylether | Jou. U | | | Processor Company of the | particular on the material states of the second sec | 1 | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 54 Time: 14:33 | | SVOA | | SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED DATE ANALYZED MATRIX UNITS | LTSSBB3118
S244969*12
LTSSBB3118
07/11/02
07/15/02
07/20/02
Soil | 3 | LTS-S-BB3J-10
LTSSBB3J10
S244969*6
LTSSBB3J10
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-C-BB3J-10
LTSCBB3J10
S244969*7
LTSCBB3J10
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3J-12
LTSSBB3J12
S244969*8
LTSSBB3J12
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3J-14
LTSSBB3J14
S244969*9
LTSSBB3J14
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3K-10
LTSSBB3K10
S244969*3
LTSSBB3K10
07/11/02
07/15/02
07/19/02
Soil
UG/KG | |---|---|---|--|--|---------------------------------------|---|---|---|---|---| | L | CAS | # Parameter | | LIB08 | VAL | LIBOS VAL | LIBO8 VAL | LIBO8 VAL | LIBOS VAL | LIBOS VAL | | | 87-86-
86-74-1
84-74-
85-68-
91-94-
117-81-
117-84-(
100-52-1
98-86-6 | / bis(2-Ethylhex)
Di-n-octylphth
/ Benzaldehyde
Acetophenone | nol
alate
halate
enzidine
yl)phthalate (BEHP) | 380.
940.
380.
380.
380.
380.
380.
380.
380.
380. | U U U U U U U U U U U U U U U U U U U | 390. U 980. U 390. | 400. U
1000. U
400. U
400. U
400. U
400. U
400. U
400. U
400. U
400. U | 390. U 980. U 390. | 380. U 950. U 380. | 410. U 1000. U 410. | | | 92-52-2 | Caprolactam
1,1-Biphenyl
Atrazine | | 380.
380.
380. | U
U
U | 390. U
390. U
390. U | 400. U
400. U
400. U | 390. U
390. U
390. U | 380. U
380. U
380. U | 410. U
410. U
410. U | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 55 Time: 14:33 | SVOA - SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED MATRIX UNITS | > LTSSBB3K12
> \$244969*4
> LTSSBB3K12
> 07/11/02
> 07/15/02
> 07/20/02 | LTS-S-BB3K-14
LTSSBB3K14
S244969*5
LTSSBB3K14
07/11/02
07/15/02
07/22/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
S242909*13
LTSSBC0212
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BC04-22
LTSSBC0422
S242909*11
LTSSBC0422
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-C-BC04-22
LTSCBC0422
S242909*12
LTSCBC0422
04/26/02
05/01/02
05/03/02
Soil
UG/KG | | |---|--|---|--|--|--|--| | CAS # Parameter | LIBO8 VAL | LIBO8 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | 108-95-2 Phenol | 380. U | 380. U | 380. U | 380. U | 390. U | | | 111-44-4 bis(2-Chloroethyl)ether | 380 U | 380. U | 380. U | 380. U | 390. U
390. U | | | 95-57-8 2-Chlorophenol | 380. U | 380. U | 380. U | 380. U
380. U | 390. U | feet of the state of | | 95-48-7 2-Methylphenol (o-Cresol) | 380. U | 380. U
380. U | 380. U
380. U | 380. U | 390. U | | | 108-60-1 2,2'-oxybis(1-Chloropropane)/bis(| | 380. U
380. U | 380. U | 380. U | 390. U | | | 9999900-32-2 3-Methylphenol/4-Methylphenol | 380. U
380. U | 380. U | 380. U | 380. U | 390. U | | | 621-64-7 N-Nitroso-di-n-propylamine | 380. U | 380. U | 380. U | 380. U | 390. U | | | 98-95-3 Nitrobenzene | 380. U | 380. U | 380. U | 380. U | 3 90. ∶U | | | 78-59-1 Isophorone | 380. U | 380. U | 380. U | 380. U | 390. U | Bridge Hallman in A | | 88-75-5 2-Nitrophenol | 380. U | 380. U | 380. U | 380. U | 390. U | 23 - 1 - 1 | | 105-67-9 2,4-Dimethylphenol | 380. U | 380. U | 380. U | 380. U | 390. U | | | 120-83-2 2,4-Dichlorophenol | 380. U | 380. U | 380. U | 380. U | 390. U | sasandaren harria da d | | 106-47-8 4-Chloroaniline | 380. U | 380. U | 380. U | 380. U | 390. U
390. U | | | 111-91-1 bis(2-Chloroethoxy)methane | 380. U | 380. U | 380. U | 380. U
380. U | 390. U | Santario de la compania de la compania de la compania de la compania de la compania de la compania de la compa | | 87-68-3 Hexachlorobutadiene | 380. U | 380. U
380. U | 380. U
380. U | 380. U | 390. U | | | 59-50-7 4-Chloro-3-methylphenol | 380. U
380. U | ່ 380. ປ
380. ປ | 380. U | 380. U | 390. Ü | | | 91-57-6 2-Methylnaphthalene | 380. U
380. U | 380. U | 380. U | 380. U | 390. U | · · | | 77-47-4 Hexachlorocyclopentadiene | 380. U | 380. U | 380. U | 380. U | 390. U | | | 88-06-2 2,4,6-1richtorophenol
95-95-4 2,4,5-Trichtorophenol | 960. U | 940. U | 960. U | 940. U | 990. U | | | 91-58-7 2-Chloronaphthalene | 380. U | 380. U | 380. U | 380. U | 390. U | | | 88-74-4 2-Nitroaniline | 960. · U | 940. U | 960. U | 940. U | ال 990. | o satisfaciologia, distribute si "" s | | 131-11-3 Dimethylphthalate | 380. U | 380. ∪ | 380. U | 380. U | 390. ∪ | | | 606-20-2 2,6-Dinitrotoluene | 380. U | 380. U | 380. U | 380. U | 390. U | er verification and the first section of | | 99-09-2 3-Nitroaniline | 960. U | 940. U | 960. U | 940. U | 990. U | | | 51-28-5 2,4-Dinitrophenol | 960. U | 940. U | 960. U | 940. U | 990. U
990. U | Berger Berger | | 100-02-7 4-Nitrophenol | 960. U | 940. U | 960. U | 940. U
380. U | 990. U
390. U | | | 132-64-9 Dibenzofuran | 380. U | 380. U | 380. U | \$5555555555555555555555555555555555555 | 390. U | | | 121-14-2 2,4-Dinitrotoluene | 380. U | 380. U | 380. U
380. U | 380. U
380. ∪ | 390. U | don recombinational environment of a control of a control of | | 84-66-2 Diethylphthalate | 380. U
380. U | 380. U | 380. U | 380. U | 390. U | | | 7005-72-3 4-Chlorophenylphenyl ether | 380. U
960. U | 940. U | 960. U | 940. U | 990. U | 1 | | 100-01-6 4-Nitroaniline
534-52-1 2-Methyl-4,6-Dinitrophenol | 960. U | 1 2002-10 mm at 10. | 960. U | 940. Ū | 990. U | | | 122-39-4 Diphenylamine | 380. U | 380. U | 380. U | 380. U | 390. U | | | 101-55-3 4-Bromophenyl-phenylether | 380. U | 380. | 380. U | 380. U | 390. U | | | | | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 56 Time: 14:33 | SVOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> LAB SAMPLE ID> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3K-12
LTSSBB3K12
S244960*4
LTSSBB3K12
07/11/02
07/15/02
07/20/02
Soil
UG/KG | LTS-S-BB3K-14
LTSSBB3K14
S244960*5
LTSSBB3K14
07/11/02
07/15/02
07/22/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
S242909*13
LTSSBC0212
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-S-BC04-22
LTSSBC0422
S242909*11
LTSSBC0422
04/26/02
05/01/02
05/03/02
Soil
UG/KG | LTS-C-BC04-22
LTSCBC0422
S242909*12
LTSCBC0422
04/26/02
05/01/02
05/03/02
Soil
UG/KG | | |--|---|--|---|--|--|--|--| | CAS # | Parameter | L1808 VAL | LIBOS VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | 87-86-5
86-74-8
84-74-2
85-68-7
91-94-1
117-81-7
117-84-0
100-52-7
98-86-2
105-60-2 | Hexachlorobenzene Pentachlorophenol Carbazole Di-n-butylphthalate
Butylbenzylphthalate 3,3'-Dichlorobenzidine bis(2-Ethylhexyl)phthalate (BEHP) Di-n-octylphthalate Benzaldehyde Acetophenone Caprolactam 1,1-Biphenyl Atrazine | 380. U
960. U
380. U | 380. U
380. U
380. U
380. U
380. U
380. U
380. U
380. U
380. U | 380. U 960. U 380. | 380. U 940. U 76. J 380. U | 390. U 990. U 390. | | | | | | | | | | | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: 57 Time: 14:33 | | | | | | a constitution (1997) | | | | |-----|-----------|--|---|--|--|--|--|--| | VOA | | SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT - SAMPLE DATE DATE EXTRACTED MATRIX UNITS | -> 209315-010
-> LTSCBB0118
-> 04/26/02
-> 04/26/02
-> 05/07/02 | LTS-S-BB01-18
LTSSBB0118
209315-009
LTSSBB0118
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB02-18
LTSSBB0218
209315-007
LTSSBB0218
04/26/02
04/26/02
05/06/02
Soil
UG/KG | LTS-S-8802-25
LTSS880225
209315-008
LTSS880225
04/26/02
04/26/02
05/06/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
209315-013
LTSSBB0305
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB03-14
LTSSBB0314
209315-014
LTSSBB0314
04/26/02
04/26/02
05/07/02
Soil
UG/KG | | | CAS # | Parameter | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | 7 | 7/ - 07-7 | Chloromethane | 9. U | 9. U | 8. U | 9. U | 9. U | 9. U , ' | | 1 | 100 1 100 | Bromomethane | 9. Ŭ | 9. U | 8. U | 9. U | 9. U | 9. U | | 1 | 20 57 0 | Vinyl chloride | 9 11 | 9. U | 8. U | 9. U | 9. U | 9. U | | | | Chloroethane | 9.00 | 9. U | 8. U | 9. ∪ | 9. U | 9. U | | 1 | | Methylene chloride | 9- U | 9. U | 8. U | 9. U | 9. U | 9. U | | | | Acetone | . Ulawa 1914 (Bush 1964) | 10. | 10. | 14. | 26 | 23. | | | | Carbon disulfide | 9. U | 9. U | 8. U | 9. U | 9. U | 9. U | | | | 1,1-Dichloroethene | 9. U | 9. U | 8. U | 9. U | 9: Ü | 9. Ü | | | | 1,1-Dichloroethane | 9. U | 9. U | 8. U | 9. U | g. U o | 9. U | | 6 | 7-66-3 | Chloroform | 9. U | 9. U | 8. U | 9 U | 9. U | 9. | | 10 | 7-06-2 | 1,2-Dichloroethane | 9. U | 9. U | 8. U | 9. U | 9. U | 9. U | | 7 | 8-93-3 | 2-Butanone (MEK) | 9. U | 9. U | 8. U | 9. U | 9. U | j | | 7 | 1-55-6 | 1,1,1-Trichloroethane | 9. U | 9. U | 8. U | 9. U | J 9. U | 9. U | | 5 | 6-23-5 | Carbon tetrachloride | 9. U | 9. U | 8. U | 9, U | 9. U | Bayeria (17.40), alaa (11.10).
 | | | | Bromodichloromethane | 9. U | . 9. U | 8. U | 9. U | 9. U
9. U | ં ું ં ં | | | | 1,2-Dichloropropane | 9. U | 9. U | 8. U | 9. U | 9. U | 9. U | | 1 | 2 3054 | cis-1,3-Dichloropropene | 9. U | 9. U | 8. U | 9. U
9. U | 9. +0 | 9. Ü | | -1 | | Trichloroethene | 9. U | 9. U
9. U | 8. U | 9. U | 9. U | 9. U | | | | Dibromochloromethane | 9. U | | 8. Ŭ | وَ وَ وَ وَ الْحَالَ وَ الْحَالَ وَ الْحَالَ الْحَالَ الْحَالَ الْحَالَ الْحَالَ الْحَالَ الْحَالَ ا | 9 | 9 0 | | | | 1,1,2-Trichloroethane | . Tark (A.S., 1811) (99 0) (813) (9 00) | 9. U | 8. U | 9. U | 9. U | 9. U | | | | Benzene
trans-1,3-Dichloropropene | 9. Ŭ | ່ . ບໍ່ | 8. Ü | 9, 0 | 9. 0 | 9. 0 | | 1 | | Bromoform | 9 11 | 9. U | 8. U | 9. U | 9. U | 9. U | | 1 | | 4-Methyl-2-Pentanone (MIBK) | 9. Ŭi | 9. Ŭ | 8. U | 9. U | 9. UJ | 9. UJ | | | | 2-Hexanone | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. UJ: | | | 4.4 | Tetrachloroethene | 9. 01 | 9. 0 | 8. ∪ | 9. U | 9. UJ | 9. UJ | | | | 1,1,2,2-Tetrachloroethane | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. UJ | | 1 | | Toluene | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. UJ | | 1 | | Chlorobenzene | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. UJ | | | | Ethylbenzene | 9. UJ | 9. ن | 8. U | 9. U | 9. UJ | 9. UJa | | 1 | | Styrene | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. UJ | | | | Xylene (Total) | 9. UJ | 9. U | 8. U | 9. U | 9. UJ | 9. ∪0 | | 15 | 6-59-2 | cis-1,2-Dichloroethene | 9. U | 9. U | 8. U | 9. U | 9. U | 9. U
9. U | | | | trans-1,2-Dichloroethene | 9. U | 9. 0 | 8. U | 9. U | 9. U | 9. U | | 1 | , | Methyl tert-butyl ether | 9. U | 9. U | 8. U | 9. U | 9. 0 | 9. U | | 7: | 5-71-8 | Dichlorodifluoromethane | | 9. | 8. U | 9∪ | 9 | person i i i i Zit a i i i i i i i i i i i i i i i i i i i | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 58 Time: 14:33 | |
Terrori (Torrori o Torrori To rrori o Torrori T | - | · | 1000000000000000000000000000000000000 | | | | |---|--|--|--|--|--|--|--| | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-C-BB01-18
LTSCBB0118
209315-010
LTSCBB0118
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB01-18
LTSSBB0118
209315-009
LTSSBB0118
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB02-18
LTSSBB0218
209315-007
LTSSBB0218
04/26/02
04/26/02
05/06/02
Soil
UG/KG | LTS-S-BB02-25
LTSSBB0225
209315-008
LTSSBB0225
04/26/02
04/26/02
05/06/02
Soil
UG/KG | LTS-S-BB03-05
LTSSBB0305
209315-013
LTSSBB0305
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB03-14
LTSSBB0314
209315-014
LTSSBB0314
04/26/02
04/26/02
05/07/02
Soil
UG/KG | | CAS # | Parameter | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | 76-13-1
79-20-9
110-82-7 | Trichlorofluoromethane
Trichlorotrifluoroethane (Freon 113
Methyl Acetate
Cyclohexane
Methyl Cyclohexane | 9. U
9. U
9. U
9. U
9. U | 9. U
9. U
9. U
9. U
9. U | 8. U
8. U
8. U
8. U
8. U | 9. U
9. U
9. U
9. U
9. U | 9. U
9. U
9. U
9. U | 9. U
9. U
9. U
9. U | | 106-93-4
98-82-8
541-73-1
106-46-7 | 1,2-Dibromoethane
Isopropylbenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,2-Dichlorobenzene | 9. UJ
9. UJ
9. UJ
9. UJ
9. UJ | 9. U
9. U
9. U
9. U
9. U | 8. U
8. U
8. U
8. U
8. U | 9. U
9. U
9. U
9. U
9. U | 7: UJ
9: UJ
9: UJ
9: UJ
9: UJ | 9. UJ
9. UJ
9. UJ
9. UJ
9. UJ | | 96-12-8 | 1,2-Dibromo-3-Chloropropane
1,2,4-Trichlorobenzene | 9. UJ
9. UJ | 9. U
9. U | 8. U
8. U | 9. U
9. U
9. U | 9. UJ
9. UJ
9. UJ | 9. UJ
9. UJ | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER
INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: 59 Time: 14:33 | VOA SAMPLE ID ORIGINAL ID LAB SAMPLE ID ID FROM REPORT SAMPLE DATE DATE EXTRACTED DATE ANALYZED MATRIX UNITS | > 209315-011
> LTSSBB0417
> 04/26/02
> 04/26/02
> 05/06/02 | LTS-S-BB04-25
LTSSBB0425
209315-012
LTSSBB0425
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3B-14
LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | |--|--|--|--|--|--|---| | CAS # Parameter | 209315 VAL | 209315 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210127 VAL | | 74-87-3 Chloromethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 74-83-9 Bromomethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 75-01-4 Vinyl chloride | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 75-00-3 Chloroethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 75-09-2 Methylene chloride | 8. U | 9. U | 10. U | 8. U | - 8. UJ | 8. UJ | | 67-64-1 Acetone | 14. | 11. | 13. J | 8. U | 8. UJ | 10. | | 75-15-0 Carbon disulfide | 8. U - | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 75-35-4 1,1-Dichloroethene | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 75-34-3 1,1-Dichloroethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 67-66-3 Chloroform | 8. U | 9. U | 10. U | 8. ∪ | 8. UU | 8. UJ | | 107-06-2 1,2-Dichloroethane | 8. U | 9. U | 10. U | 8. υ | 8. UJ | 8. UJ | | 78-93-3 2-Butanone (MEK) | 8. ∪ | 9. U | 10. U | 8. ∪ . | 8. UJ | 8. ÚJ | | 71-55-6 1,1,1-Trichloroethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 56-23-5 Carbon tetrachloride | 8. U | 9. U | 10. U | 8. ∪ | 8. ÚJ | 8. UJ | | 75-27-4 Bromodichloromethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 78-87-5 1,2-Dichloropropane | 8, U | 9. 0 | 10. U | 8. U | 8. UJ | 8. UJ | | 10061-01-5 cis-1,3-Dichloropropene | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 79-01-6 Trichloroethene | 8. U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ | | 124-48-1 Dibromochloromethane | 8, U | 9. U | 10. U | 8. U | 8. UJ | 8. UJ
8. UJ | | 79-00-5 1,1,2-Trichloroethane | 8. U | 9. U | 10. U | 8. U | 8. UJ | * | | 71-43-2 Benzene | 8. U | 9. · U | 10. U | 8. U | -8. UJ | 8. UJ
8. UJ | | 10061-02-6 trans-1,3-Dichloropropene | 8. U | 9. ∪ | 10. U | 8. U | 8. UJ | perior estate to the | | 75-25-2 Bromoform | 8. U | 9. U | 10' U | 8. UJ | 8. UJ | 8. UJ | | 108-10-1 4-Methyl-2-Pentanone (MIBK) | 8. U | 9. UJ | 10. U | 8. U | 8. UJ | 8. UJ | | 591-78-6 2-Hexanone | 8. U | 9. Uj | 10. U | 8. U | 8. UJ | 8. UJ | | 127-18-4 Tetrachtoroethene | 8, 0 | 9. UJ | 10. U | 8. ∪ | T | I | | 79-34-5 1,1,2,2-Tetrachloroethane | 8. U | 9. UJ ' | 10. U | 8. UJ | 8. UJ | 8. UJ
8. UJ | | 108-88-3 Toluene | 8. U | 9. UJ | 10. U | 8. U | 8. UJ | 100 to | | 108-90-7 Chlorobenzene | 8. U | 9. UJ | 10. U | 8. UJ | 8. UJ | 8. UJ
8. UJ | | 100-41-4 Ethylbenzene | 8. U | 9. UJ | 10. U | 8. UJ | 8. UJ | r | | 100-42-5 Styrene | 8. U | 9. UJ | 10. U | 8. UJ | 8. UJ | 8. UJ
8. UJ | | 1330-20-7 Xylene (Total) | 8. U | 9. UJ | 10. U | 8, UJ | 8. UJ | 1 2" | | 156-59-2 cis-1,2-Dichloroethene | 8. U | 9. U | 10. U | 8. U | 8. UJ
8. UJ | 8. UJ
8. UJ | | 156-60-5 trans-1,2-Dichtoroethene | 8. U | 9. U | 10. U | 8. U | 8. UJ
8. UJ | 8. UJ | | 1634-04-4 Methyl tert-butyl ether | . North and the contraction to the second section of section of the second section of the second section of the s | 9. U | 10. U | 8. U
8. U | 8. UJ
8. UJ | 8. UJ | | 75-71-8 Dichlorodifluoromethane | 8. U | 9. U | 10. U | O. U | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 60 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-S-BB04-17
LTSSBB0417
209315-011
LTSSBB0417
04/26/02
04/26/02
05/06/02
Soil
UG/KG | LTS-S-BB04-25
LTSSBB0425
209315-012
LTSSBB0425
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BB3B-12
LTSSBB3B12
210127-003
LTSSBB3B12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3B-14
LTSSBB3B14
210127-004
LTSSBB3B14
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3B-16
LTSSBB3B16
210127-005
LTSSBB3B16
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3C-12
LTSSBB3C12
210127-006
LTSSBB3C12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | |---|---|--|--|--|--|--|--| | CAS | # Parameter | 209315 VAL | 209315 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210127 VAL | | 76-13
79-20
110-82
108-87
106-93
98-82
541-73
106-46
95-50
96-12 | 7-4 Trichlorofluoromethane 1 Trichlorofluoromethane (Freon 11) 1-9 Methyl Acetate 1-7 Cyclohexane 1-2 Methyl Cyclohexane 1-4 1,2-Dibromoethane 1 Isopropylbenzene 1 1,3-Dichlorobenzene 1 1,4-Dichlorobenzene 1 1,2-Dibromo-3-Chloropropane 1 1,2-Dibromo-3-Chloropropane | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 9. U | 10. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 61 Time: 14:33 | 1 08/23/02 | Magazines | Bravo and Ch | narlie Soil Sa | amples | | | |---|--
--|--|--|--|--| | VOA SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTSSBB3C14
210127-007
LTSSBB3C14
06/07/02
06/07/02
06/13/02 | LTS-S-BB3C-16
LTSSBB3C16
210127-008
LTSSBB3C16
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3D-12
LTSSBB3D12
210146-001
LTSSBB3D12
06/07/02
06/08/02
06/14/02
Soil
UG/KG | LTS-S-BB3D-14
LTSSBB3D14
210146-002
LTSSBB3D14
06/07/02
06/08/02
06/13/02
Soil
UG/KG | LTS-C-BB3D-16
LTSCBB3D16
210146-004
LTSCBB3D16
06/07/02
06/08/02
06/14/02
Soil
UG/KG | LTS-S-BB3D-16
LTSSBB3D16
210146-003
LTSSBB3D16
06/07/02
06/08/02
06/14/02
Soil
UG/KG | | CAS # Parameter | 210127 VAL | 210127 VAL | 210146 VAL | 210146 VAL | 210146 VAL | 210146 VAL | | 74-87-3 74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-35-4 75-34-3 67-66-3 107-06-2 1,2-Dichloroethane 78-93-3 2-Butanone (MEK) 71-55-6 1,1,1-Trichloroethane 78-87-5 10061-01-5 79-01-6 124-48-1 179-00-5 71-43-2 10061-02-6 75-25-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 79-34-5 108-88-3 108-90-7 100-41-4 100-42-5 1330-20-7 Xylene (Total) | 9. U | 8. U | 9. U | 9. U | 9. U | 9. U 9. U 9. U 9. U 12. 9. U | | 156-59-2 cis-1,2-Dichloroethene
156-60-5 trans-1,2-Dichloroethene
1634-04-4 Methyl tert-butyl ether
75-71-8 Dichlorodifluoromethane | 9. U
9. U
9. U
9. U | 8. UJ
8. UJ
8. UJ
8. UJ | 9. U
9. U
9. U
9. U | 9. U
9. U
9. U
9. U | 9. U
9. U
9. U
9. U | 9. U
9. U
9. U | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 62 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | 06/07/02
06/13/02
Soil | LTS-S-BB3C-16
LTSSBB3C16
210127-008
LTSSBB3C16
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3D-12
LTSSBB3D12
210146-001
LTSSBB3D12
06/07/02
06/08/02
06/14/02
Soil
UG/KG | LTS-S-BB3D-14
LTSSBB3D14
210146-002
LTSSBB3D14
06/07/02
06/08/02
06/13/02
Soil
UG/KG | LTS-C-BB3D-16
LTSCBB3D16
210146-004
LTSCBB3D16
06/07/02
06/08/02
06/14/02
Soil
UG/KG | LTS-S-BB3D-16
LTSSBB3D16
210146-003
LTSSBB3D16
06/07/02
06/08/02
06/14/02
Soil
UG/KG | |---|--|------------------------------|--|--|--|--|--| | 75-69-4
76-13-1
79-20-9
110-82-7
108-87-2
106-93-4
98-82-8
541-73-1
106-46-7
95-50-1 | Trichlorofluoromethane Trichlorotrifluoroethane (Freon 11: Methyl Acetate Cyclohexane Methyl Cyclohexane 1,2-Dibromoethane Isopropylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene | 9. U | 8. UJ | 9. U | 9. U | 9. U | 9. U | | | | | | | | | | # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 63 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | 210701-028
LTSSBB3D18
07/11/02
07/13/02
07/18/02
Soil | LTS-S-BB3E-12
LTSSBB3E12
210127-009
LTSSBB3E12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3E-14
LTSSBB3E14
210127-010
LTSSB5E14
06/07/02
06/07/02
06/13/02
Soil
UG/KG | LTS-S-BB3E-16
LTSSBB3E16
210127-011
LTSSBB3E16
06/07/02
06/07/02
06/13/02
Soil
UG/KG | LTS-S-BB3F-14
LTSSBB3F14
210701-025
LTSSBB3F14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3F-16
LTSSBB3F16
210701-026
LTSSBB3F16
07/11/02
07/13/02
07/18/02
Soil
UG/KG | |------|---|--|--|---|--|--|--| | CA | S # Parameter | 210701 VAL | 210127 VAL | 210127 VAL | 210127. VAL | 210701 VAL | 210701 VAL | | 74-8 | 7-3 Chloromethane | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U | | 74-8 | 3-9 Bromomethane | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U
9. U | | 75-0 | 1-4 Vinyl chloride | 9. U | 9. U | 9. U | 9. U | 8. U | 9. 0 | | 75-0 | 0-3 Chloroethane | 9. ∪ | 9. U | 9. U | 9, ∪ | 8. U
8. U | 9. U | | 75-0 | 9-2 Methylene chloride | 9. U | 9. U | 9. U | enari saga i ing | l es a sulla de la compania de la compania de la compania de la compania de la compania de la compania de la c | 14. | | | 4-1 Acetone | 14. | 11. | 12. J | 9. U | 8. U | | | | 5-0 Carbon disulfide | 9. U | 9. U | 9. U | 9. U | 8. U
8. U | , | | | 5-4 1,1-Dichloroethene | 9. ∪ | 9. U | 9, U | 9. U | 8. U | 9. U | | | 4-3 1,1-Dichloroethane | 9. U | 9. U | 9. U | 9. U
9. U | | | | | 6-3 Chloroform | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U | | 1 | 6-2 1,2-Dichloroethane | 9. U | 9. U | 9. U | 9. U | នី ប៉ | ģ. U | | | 3-3 2-Butanone (MEK) | 9. U | 9. U | 9. U
9. U | 9. U | 8. U | 9 . U | | | 5-6 1,1,1-Trichloroethane | 9. U | ງ. ບ
 | ,
9. U | و ان بار فران | i i i i i i i i i i i i i i i i i i i | ် တိုင်းမျိုး | | | 3-5 Carbon tetrachloride | 9. U | , , , , | 9. U | 9. U | 8. U | 9. U | | | 7-4 Bromodichloromethane | 9. U | 9. U
9. U | 9. U | 9. Ü | 8. Ŭ | 9. 0 | | | 7-5 1,2-Dichloropropane | 9. U | 9. U
9. U | 9. U | 9. U | 8. U | 9. U | | | 1-5 cis-1,3-Dichloropropene | 9. 0 | 9 | 9. Ü | ý. Ŭ | 8. Ú | 9. Ü | | 1 | 1-6 Trichloroethene | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U | | | 8-1 Dibromochloromethane | 9. 0 | j i | | | 8. U | 9. U | | I . | 0-5 1,1,2-Trichloroethane | 9. 0 | 9. U | 9. U | 9. U | 8. U | 9. U | | | 3-2 Benzene | j j | 9. Ú | 9. U | 9. U | 8. U | 9. | | | 2-6 trans-1,3-Dichloropropene
5-2 Bromoform | 9. 1 U | 9. U | 9. UJ | 9. U | 8. U | 9. U | | | 0-1 4-Methyl-2-Pentanone (MIBK) | 9. Ŭ | 9. Ŭ | 9. U | 9. U | 8. U | 9, U | | | 8-6 2-Hexanone | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U | | 1 . | 8-4 Tetrachloroethene | 9. | 9. Ú | 9. U | 9. U | 8. U | 9. 0 | | | 4-5 1,1,2,2-Tetrachloroethane | 9. U | 9. U | 9. UJ | 9. U | 8. U | - 9. U | | 1 | 8-3 Toluene | ن في الله الله الله الله الله الله الله الل | 9 | 9. U | 9. U | 8. U | 9. U | | 1 | 0-7 Chlorobenzene | 9. U | ا 9. نا | 9. UJ | 9. U | 8, U | 9. U | | | 1-4 Ethylbenzene | 9. U | 9. U | 9. UJ | 9. U | 8. U | 9. | | | 2-5 Styrene | 9. U | 9. U | 9. UJ | 9. U | 8. U | 9. U | | | 0-7 xylene (Total) | 9. Ū | 9. U | 9. UJ | 9, U | 8. U | 9. U | | | 9-2 cis-1,2-Dichloroethene | 9. U | 9. U | 9. U | 9. U | 8. , U | 9. U | | | 0-5 trans-1,2-Dichloroethene | 9. Ü | 9. U | 9. U | 9. U | 8. U | 9. U | | | 4-4 Methyl tert-butyl ether | 9. U | 9. U | 9. U | 9. U | 8. U | 9. U
040-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | | 1-8 Dichlorodifluoromethane | 9. U | 9. U | 9. U | 9. U | 8. U | 9. ⊍ | | | | | · | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION (agazines Bravo and Charlie Soil Samples Page: 64⁻ Time: 14:33 | | | Magazines | Bravo and Ch | arlie Soil Sa | amples | <u> </u> | | |--|---|--|--|--|--|--
--| | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3D18
210701:028
LTSSBB3D18
07/11/02
07/13/02
07/18/02
Soil | LTS-5-8B3E-12
LTSSB3E12
210127-009
LTSSB3E12
06/07/02
06/07/02
06/12/02
Soil
UG/KG | LTS-S-BB3E-14
LTSSBB3E14
210127-010
LTSSBB3E14
06/07/02
06/07/02
06/13/02
Soil
UG/KG | LTS-S-BB3E-16
LTSSBB3E16
210127-011
LTSSBB3E16
06/07/02
06/07/02
06/13/02
Soil
UG/KG | LTS-S-BB3F+14
LTSSBB3F14
210701-025
LTSSBB3F14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3F-16
LTSSBB3F16
210701-026
LTSSBB3F16
07/11/02
07/13/02
07/18/02
Soil
UG/KG | | CAS: # | Parameter | 210701 VAL | 210127 VAL | 210127 VAL | 210127 VAL | 210701 VAL | 210701 VAL | | 76-13-1
79-20-9
110-82-7
108-87-2
106-93-4
98-82-8
541-73-1
106-46-7
95-50-1 | Trichlorofluoromethane Trichlorotrifluoroethane (Freon 11 Methyl Acetate Cyclohexane Methyl Cyclohexane 1,2-Dibromoethane Isopropylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene | 9. U | 9. U | 9. U | 9. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 9. U | | | | | | | | • | | | | | | | | | | | | | | | | | | • | | | • | | | | | T. | | | | | | | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: Time: 14:33 | VOA SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> MATRIX> UNITS> | LTS-S-BB3F-18
LTSSBB3F18
210701-027
LTSSBB3F18
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LIS-S-BB3G-10
LISSBB3G10
210701-014
LISSBB3G10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-12
LTSSBB3G12
210701-015
LTSSBB3G12
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-14
LTSSBB3G14
210701-016
LTSSBB3G14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-C-BB3G-14
LTSCBB3G14
210701-017
LTSCBB3G14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-16
LTSSBB3G16
210701-018
LTSSBB3G16
07/11/02
07/13/02
07/18/02
Soil
UG/KG | |--|--|---|--|--|--|--| | CAS # Parameter | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 74-87-3 Chloromethane 74-83-9 Bromomethane 75-01-4 Vinyl chloride 75-00-3 Chloroethane 75-09-2 Methylene chloride 67-64-1 Acetone 75-15-0 Carbon disulfide 75-35-4 1,1-Dichloroethane 75-34-3 1,1-Dichloroethane 67-66-3 Chloroform 107-06-2 1,2-Dichloroethane 78-93-3 2-Butanone (MEK) 71-55-6 1,1,1-Trichloroethane | 8. U
8. U
8. U
8. U
12
8. U
8. U
8. U
8. U
8. U
8. U | 10. U 10, U 10. U 10. U 10. U 23. 10. U | 8. U 8. U 8. U 8. U 8. U 10 | 9. U 9. U 9. U 9. U 16. 9. U 9. U 17. U 9. | 8. U
8. U
8. U
8. U
19.
8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ | | 56-23-5 75-27-4 Bromodichloromethane 78-87-5 1,2-Dichloropropane 10061-01-5 79-01-6 Trichloroethene 124-48-1 Dibromochloromethane 79-00-5 1,1,2-Trichloroethane Benzene | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 10. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U | 9. U
9. U
9. U
9. U
9. U
9. U
9. U
9. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | | 10061-02-6 trans-1,3-Dichloropropene - 75-25-2 Bromoform 108-10-1 4-Methyl-2-Pentanone (MIBK) 591-78-6 2-Hexanone 127-18-4 Tetrachloroethene - 79-34-5 1,1,2,2-Tetrachloroethane 108-88-3 Toluene 108-90-7 Chlorobenzene 100-41-4 Ethylbenzene 1330-20-7 Xylene (Total) 156-59-2 cis-1,2-Dichloroethene 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-butyl ether - 75-71-8 Dichlorodifluoromethane | 8. UJ | 10, U | 8. U | 9. U | 8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | ## LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 66 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTSSBB3F18
210701-027
LTSSBB3F18
07/11/02
07/13/02
07/18/02
Soil | LTS-S-BB3G-10
LTSSBB3G10
210701-014
LTSSBB3G10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-883G-12
LTSS883G12
210701-015
LTSS883G12
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-14
LTSSBB3G14
210701:016
LTSSBB3G14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-C-BB3G-14
LTSCBB3G14
210701-017
LTSCBB3G14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3G-16
LTSSBB3G16
210701-018
LTSSBB3G16
07/11/02
07/13/02
07/18/02
Soit
UG/KG | |---|---|--|--|--|--|--|--| | CAS.# | Parameter | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 76-13-1
79-20-9
110-82-7
108-87-2 | Trichlorofluoromethane Trichlorotrifluoroethane (Freon 11 Methyl Acetate Cyclohexane Methyl Cyclohexane 1,2-Dibromoethane | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | 10. U
10. U
10. U
10. U
10. U | 8. U
8. U
8. U
8. U
8. U | 9. U
9. U
9. U
9. U
9. U
9. U | 8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | | 98-82-8
541-73-1
106-46-7
95-50-1
96-12-8 | Isopropylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene | 8. UJ
8. UJ
8. UJ
8. UJ | 10. U | 8. U
8. U
8. U
8. U
8. U | 9. U
9. U
9. U
9. U
9. U
9. U | 8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | * | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 67 Time: 14:33 | OF
L/
II
S/
D/
D/
M/ | MPLE ID> IGINAL ID> B SAMPLE ID> FROM REPORT> MPLE DATE> TE EXTRACTED> TE ANALYZED> TRIX> ITS> | LTS-S-BB3G-
LTSSBB3G18
210701-019
LTSSBB3G18
07/11/02
07/13/02
07/18/02
Soil
UG/KG | 18 | LTS-S-B
LTSSBB3
210701-
LTSSBB3
07/11/0
07/13/0
07/18/0
Soil
UG/KG | H14
020
H14
2 | LTSSE
21070 | /02
/02 | | LTS-S-B
LTSSBB3
210701-
LTSSBB3
07/11/0
07/13/0
07/18/0
Soil
UG/KG | H18
022
H18
2 | | LTS-S-
LTSSBB
210701
LTSSBB
07/11//
07/13//
07/18//
Soil
UG/KG | -011
3114
02
02 | | LTS-S-
LTSSBB
210701
LTSSBB
07/11/
07/13/
07/18/
Soil
UG/KG- | -012
3116
02
02 | | |---|--|--|------------------
--|------------------------------|----------------|-----------------------|------------------|--|-------------------------------|---------|--|--------------------------|----------------------|--|--------------------------|------------------| | CAS # Parameter | | 210701 | VAL | 210701 | VA | L 21070 | 1 | VAL | 210701 | | VAL | 210701 | | VAL | 210701 | at the tradition of | VAL | | 74-87-3 Chloromethane
74-83-9 Bromomethane
75-01-4 Vinyl chloride | | 8.
8.
8. | U
U | | 8. U
8. U
8. U | | 9.
9.
9. | U
U
U | | 8. ι
8. ι |)
) | | 8.
8.
8. | U
U
U | | 9.
9.
9. | υ
υ
υ | | 75-00-3 Chloroethane
75-09-2 Methylene chloride
67-64-1 Acetone
75-15-0 Carbon disulfide | | 8.
8.
10.
8. | U
U
U | | 8. U
8. U
8. U
8. U | | 9.
9.
13.
9. | U
U
U | | Β. ι | J. | | 8.
8.
8. | U
U
U | | 9.
9.
9. | ับ
บ
บ | | 75-35-4 1,1-Dichloroethene
75-34-3 1,1-Dichloroethane
67-66-3 Chloroform
107-06-2 1,2-Dichloroethane | | 8.
8.
8. | U
U
U
U | | 8. U
8. U
8. U
8. U | | 9. | U
U
U | | 3. u
3. u
3. u | , | | 8.
8.
8.
8. | U
U
U | | 9.
9.
9. | บ
บ
ย
บ | | 78-93-3 2-Butanone (MEK)
71-55-6 1,1,1-Trichloroeth
56-23-5 Carbon tetrachlori | de | 8.
8.
8. | U
U | | 8. U
8. U
8. U | | 9.
9.
9. | U
U
U | | 3. ι
3. ι | | | 8.
8.
8. | U
U | | 9.
9. | U
U | | 75-27-4 Bromodichloromethal
78-87-5 1,2-Dichloropropan
10061-01-5 cis-1,3-Dichloropro
79-01-6 Trichloroethene | ppene | 8.
8.
8. | U
Ü
Ü | | 3. ∪
8. ∪
8. ∪
3. ∪ | | 9.
9. | บ
บ
บ
บ | | 3. (
3. (
3. (
3. (| | | 8.
8.
8.
8. | U
U
U | | 9.
9.
9.
9. | บ
บ
บ | | 124-48-1 Dibromochlorometha
79-00-5 1,1,2-Trichloroetha
71-43-2 Benzene
10061-02-6 trans-1,3-Dichlorop | ine | 8.
8.
8. | U
U
U | | 3. U
3. U
3. UJ | | 9.
9. | บ
บ
บ | }
{ | 3. U
3. U
3. U | | | 8.
8.
8. | บ
บ
บ | | 9.
9.
9. | U
U | | 75-25-2 Bromoform
108-10-1 4-Methyl-2-Pentanor
591-78-6 2-Hexanone | | 8.
8.
8. | U
U | | 3. UJ
3. UJ
3UJ | | 9.
9.
9. | บ
บ
บ | | 3. U
3. U | ์
เม | | 8.
8.
8. | Λ1
Λ1
Λ1 | | 9.
9.
9. | บ
บ | | 127-18-4 Tetrachlonoethene
79-34-5 1,1,2,2-Tetrachlono
108-88-3 Toluene
108-90-7 Chlorobenzene | | 8.
8.
8. | U
U
U | 8.000 to 8 | 3. UJ
3. UJ
3. UJ | | 9.
9. | บ
บ
บ | 8
8 | հ. Մ
հ. Մ
հ. Մ | J., | ni. Adam | 8.
8.
8.
8. | nn
nn
nn
nn | | 9.
9. | U
U
U | | 100-41-4 Ethylbenzene
100-42-5 Styrene
1330-20-7 Xylene (Total) | | 8.
8. | U
U | 8
8 | . UJ
5. UJ | | 9.
9.
9. | บ
บ
บ | 8
8 | ن
ن .
ن | J
J | | 8.
8.
8. | กา
กา
กา | eskina is i | 9.
9.
9. | บ
บ | | 156-59-2 cis-1,2-Dichloroeth
156-60-5 trans-1,2-Dichloroe
1634-04-4 Methyl tert-butyl e | thene | 8.
8.
8. | U
U
U | The state of the second |). UJ
 . UJ
 . UJ | | 9. | ט
ט
ע | 9
8 | or an interest describer of a | J | | 8. | UJ
UJ | | • | U
U | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 68 Time: 14:33 | | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB3G-18
LTSSBB3G18
210701-019
LTSSBB3G18
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3H-14
LTSSBB3H14
210701-020
LTSSBB3H14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3H-16
LTSSBB3H16
210701-021
LTSSBB3H16
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3H-18
LTSSBB3H18
210701-022
LTSSBB3H18
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB31-14
LTSSBB3114
210701-011
LTSSBB3114
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB31-16
LTSSBB3116
210701-012
LTSSBB3116
07/11/02
07/13/02
07/18/02
Soil
UG/KG | |--|---|--|--|--|--|--|--| | CAS # Parameter | | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 75-69-4 Trichlorofluorom 76-13-1 Trichlorotrifluo 79-20-9 Methyl Acetate 110-82-7 Cyclohexane 108-87-2 Methyl Cyclohexa 106-93-4 1,2-Dibromoethan 98-82-8 Isopropylbenzene 541-73-1 1,3-Dichlorobenz 106-46-7 1,4-Dichlorobenz 95-50-1 1,2-Dichlorobenz 96-12-8 1,2-Dibromo-3-Ch 120-82-1 1,2,4-Trichlorob | roethane (Freon 113
ne
e
ene
ene
ene
loropropane | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | 9. U | 8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ
8. UJ | 8. UJ | 9. U | | | • | LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples DATALCP3 08/23/02 Page: 69 Time: 14:33 | • • | | | | | | | |
--|---|--|--|--|--|--|--| | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB31-18
LTSSBB3118
210701-013
LTSSBB3118
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-10
LTSSBB3J10
210701-007
LTSSBB3J10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-C-BB3J-10
LTSCBB3J10
210701-010
LTSCBB3J10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-12
LTSSBB3J12
210701-008
LTSSBB3J12
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-14
LTSSBB3J14
210701-009
LTSSBB3J14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3K-10
LTSSBB3K10
210701-004
LTSSBB3K10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | | CAS # | # Parameter | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 7/ 07 7 | 3 Chloromethane | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 9 Bromomethane | 8 | 8 · · · · · · · · · · · · · · · · · · · | 8. 0 | 10. U · | 8. U | 10. U | | | y Bromomethane
4 Vinyl chloride | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | 4 | 4 Minyl Chloride
3 Chloroethane | 8. 0 | 8. U | 8. Ú | 10. U | 8. × U | 10. ∪ | | 214 424-51 | 2 Methylene chloride | 8. U | 8. U | 8. U | 10, U | 8. U | 10. U | | 1.7 | 2 Metnylene chloride
1 Acetone | 10. | 11. | 10. | 18. | 8. U | 12. | | | Acetone
 Carbon disulfide | 8. U | 8. U | 8 U | ال 10. | 8. U | 10. U | | 4 | Ulcarbon disultide
4.1.1-Dichloroethene | 8. Ŭ | 8. Ü | 8. Ü | 10. U | 8. U | 10. U | | | 3 1,1-Dichloroethene | 8. U | 8. U | 8. U | 10. U. | 8. U | 10. U | | 15 15 | 3 , -Dichtoroethane
3 Chloroform | 8. U | 8. U | 8. U | 10. U | 8. U | 10. ∪ | | | 2 1,2-Dichloroethane | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 2 ,2-Dichloroethane
3 2-Butanone (MEK) | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 5 2-Butanone (MEK)
6 1,1,1-Trichloroethane | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 5 1,1,1-Irichloroethane
5 Carbon_tetrachloride | 8. 0 | 8. ŭ | 8. Ü | 10. U | 8. U | 10. U | | | Carbon tetrachtoride:
 | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | | 8. U | 8. 0 | 8. U | 10. U | 8. U | 10. U | | | 5 1,2-Dichtoropropage | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | Annual Control of the | 5 cis-1,3-Dichloropropene | 8. U | 8. 0 | 8. U | 10. U | 8. U | 10. U | | | 5 Trichloroethene | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 1 Dibromochloromethane | િ કું ે | 8. | 8. Ü | 10. Ü | 8. Ü | 10. U | | | 5 1,1,2-Trichloroethane | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | 1 1 2 2 3 | 2 Benzene | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 6 trans-1,3-Dichloropropene | 1 | 8. U | 8. U | 10. U | 8. U | 10. U | | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 Bromoform | 8. U
8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 1 4-Methyl-2-Pentanone (MIBK) | an and an interest of the second | 8. U | 8. U | 10. ປ | 8. U | 10. U | | 1.00 | 6 2-Hexanone | 8. U
8. U | 8. U | 8. U | 10. Ŭ | 8. Ŭ | 10. U | | · - · · · - | 4 Tetrachloroethene | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 5 1,1,2,2-Tetrachloroethane | 8. U | 8. U | 8. U | 10. U | 8. U | 10. U | | | 7 Obligation | 8. U | 8. U | 8. U | 10. U | .8. U | 10. U | | | 7 Chlorobenzene | 8. U | 8. U | 8. U | 10. Ŭ | 8. U | 10. U | | | Ethylbenzene | A CONTRACTOR OF THE | 8. U | 8. U | 10. U | 8. U | 10. U | | | 5 Styrene | 8. U
8. U | 8. U | 8. U | 10. U | 8. Ŭ | 10. U | | 2.7 | 7 Xylene (Total) | 8. U | 8. U | 8. U | 10. U | 8. U | 10. υ | | | 2 cis-1,2-Dichloroethene | 8. U | 8. U | 8. U | 10. U | 8. 0 | 10. 0 | | | trans-1,2-Dichloroethene | Brown and the Committee of the State | 8. U | 8. U | 10. U | 8. U | 10. U | | | Methyl tert-butyl ether | to a Million and a series of the control of the control of | 8. U | 8. U | io. ŭ | 8. U | 10. ∪ | | 75-71-8 | 3 Dichlorodifluoromethane | 8. U | | | processors of the third will 49 or a | A SECTION SECTION | 1 | | | 1 ' | l | 1 | l | l | <u> </u> | <u> </u> | *** Validation Complete *** # LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 70 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | LTS-S-BB31-18
LTSSBB31:18
210701-013
LTSSBB31:18
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-10
LTSSBB3J10
210701-007
LTSSBB3J10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-C-BB3J-10
LTSCBB3J10
210701-010
LTSCBB3J10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-12
LTSSBB3J12
210701-008
LTSSBB3J12
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3J-14
LTSSBB3J14
210701-009
LTSSBB3J14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3K-10
LTSSBB3K10
210701-004
LTSSBB3K10
07/11/02
07/13/02
07/18/02
Soil
UG/KG | |---
--|--|--|--|--|--|--| | CAS # | Parameter | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | 210701 VAL | | 76-13-1
79-20-9
110-82-7
108-87-2
106-93-4
98-82-8
541-73-1
106-46-7
95-50-1
96-12-8 | Trichlorofluoromethane Trichlorotrifluoroethane (Freon 113 Methyl Acetate Cyclohexane Methyl Cyclohexane 1,2-Dibromoethane Isopropylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene | 8. U
8. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 8. U | 10. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 10. U | | | | | | | | | | | | | | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 71 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> HATRIX> UNITS> | LTS-S-BB3K-12
LTSSBB3K12
210701-005
LTSSBB3K12
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BB3K-14
LTSSBB3K14
210701-006
LTSSBB3K14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
209315-017
LTSSBC0212
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-C-BCU4-22
LTSCBC0422
209315-016
LTSCBC0422
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTSSBC0422
209315-015
LTSSBC0422
04/26/02
04/26/02
05/07/02
Soil
UG/KG | | |---|---|--|--|--|--|---|---| | CAS # | Parameter | 210701 VAL | 210701 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | | l | Chloromethane | 10. U | 8. U
8. U | 9. U
9. U | 8. U
8. U | 15. U
15. U | | | | Bromomethane Vinyl chloride | 10. U | 8. U | 9. U | 8. U | 15. U | | | | Chloroethane | 10. O Ú | 8. U | 9. U | 8. ∪ | 15. U | | | | Methylene chloride | 10. U | 8. U | 9. U | 8. U | 15. U
15. U | | | =, | Acetone | 12. J | 10.
8. U | 13.
9. U | 8. U
8. U | 15. U | | | | Carbon disulfide 1,1-Dichloroethene | 10. U
10. U | 8. U .
8. U | 9, U | 8. U | 15. U | | | | 1,1-Dichloroethane | 10. U | 8. U | 9. U | 8. U | 15. U | e ewalter in the e | | | Chloroform | 10. U | 8. U | 9. U | 8. U | 15. U | | | | 1,2-Dichloroethane | 10. U | 8. U | 9. U
9. U | 8. U
8. U | 15. U
15. U | | | | 2-Butanone (MEK) 1,1,1-Trichloroethane | 10. U
10. U | 8. U
8. U | 9. U | 8. U | 15. U | | | | Carbon tetrachloride | io. i | 8. Ü | 9. U | 8. U | 15. U | fer de la straktiva (18 | | | Bromodichloromethane | 10. U | 8. U | 9. U | 8. U | 15. U | udra sayiya i ya | | | 1,2-Dichloropropane | 10. U | 8. U | 9. U
' 9. U | 8. U
8. U | 15. U
15. ∪ | | | | cis-1,3-Dichloropropene Trichloroethene | 10. U
10. U | 8. U
8. U | 9. U
9. U | 8. U | 15. Ŭ | | | | Dibromochloromethane | 10. U | 8. U | 9. U | 8. U | 15. U | | | | 1,1,2-Trichloroethane | 10. U | 8. U | 9. U | 8, U | 15. U | | | 71-43-2 | Benzene | 10. U | `8. U | 9. U | 8. U | 15. ບ
15. ບ | | | 1 | trans-1,3-Dichloropropene | 10. U
10. U | 8. U
8. U | 9. U
9. U | 8. U
8. U | 15. U | 14 M 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Bromoform
4-Methyl-2-Pentanone (MIBK) | 10. | 8. U | ý. Ŭ | 8. ÚJ | 15. U | | | 1.6.5 | 2-Hexanone | 10. U | 8. U | 9. U | 8. UJ | 15. U | | | 1 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Tetrachloroethene | 10. U | 8. U | 9, U | 8, UJ | 15. U | | | | 1,1,2,2-Tetrachloroethane | 10. U
10. U | 8. U
8. U | 9. U
9. U | 8. UJ
8. UJ | 15. U
15. U | | | 108-88-3 | Totuene
 Chlorobenzene | 10. U | 8. U | 9. U | 8. UJ | 15. U | , . | | | Ethylbenzene | 10. Ŭ | 8. U | 9. U | 8. UJ | 15. U | | | 100-42-5 | Styrene | 10. U | 8. U | 9. U | 8. UJ | 15. U | | | | Xylene (Total) | 10. U | 8. U
8. U | 9. U
9. U | 8. UJ
8. U | 15. U
15. ∪ | | | | cis-1,2-Dichloroethene
trans-1,2-Dichloroethene | 10. U
10. U | 8. U
8. U | 9. Ü | 8. U | 15. U | lander in de Maria Service.
Maria de la Maria Service. | | | Methyl tert-butyl ether | 10. U | 8. U | 9. U | 8. U | - 15. U | | | | Dichlorodifluoromethane | 10. U | 8. U | چې بي ن ل اسم د يو 9. پې ښو و | 8. U | 15. U | | | | | | | | | | | #### LIBERTYVILLE TRAINING SITE 6A & 7 FURTHER INVESTIGATION Magazines Bravo and Charlie Soil Samples Page: 72 Time: 14:33 | VOA | SAMPLE ID> ORIGINAL ID> LAB SAMPLE ID> ID FROM REPORT> SAMPLE DATE> DATE EXTRACTED> DATE ANALYZED> MATRIX> UNITS> | | LTS-S-BB3K-14
LTSSBB3K14
210701-006
LTSSBB3K14
07/11/02
07/13/02
07/18/02
Soil
UG/KG | LTS-S-BC02-12
LTSSBC0212
209315-017
LTSSBC0212
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-C-BC04-22
LTSCBC0422
209315-016
LTSCBC0422
04/26/02
04/26/02
05/07/02
Soil
UG/KG | LTS-S-BC04-22
LTSSBC0422
209315-015
LTSSBC0422
04/26/02
04/26/02
05/07/02
Soil
UG/KG | |---|---|---|--|--|--|--| | CAS # | Parameter | 210701 VAL | 210701 VAL | 209315 VAL | 209315 VAL | 209315 VAL | | 76-13-1
79-20-9
110-82-7
108-87-2
106-93-4
98-82-8
541-73-1
106-46-7
95-50-1
96-12-8 | Trichlorofluoromethane Trichlorotrifluoroethane (Freon 11: Methyl Acetate Cyclohexane Methyl Cyclohexane 1,2-Dibromoethane Isopropylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene | 10. U) 10. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 9. U | 8. U
8. U
8. U
8. U
8. U
8. U
8. U
8. U | 15. U | | | | | | | | |